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Abstract. Understanding how changes in Atlantic meridional heat transport (MHT) and the Earth’s climate relate 

to one another is crucial to our ability to predict the future climate response to anthropogenic forcing. Attaining 

this understanding requires continuous and accurate records of MHT across the whole Atlantic. While such records 10 

can be obtained through direct ocean observing systems, these systems are expensive to install and maintain and 

thus, in practice, records of MHT derived in this way are restricted to a few latitudes. An alternative approach, 

based on hydrographic and satellite components of the global ocean observing system, consists of inferring heat 

transport convergence as a residual from the difference between ocean heat content (OHC) changes and surface 

heat flux. In its simplest form, this approach derives the OHC from hydrographic observations alone, however these 15 

observations are spatially sparse and unevenly distributed, which can introduce significant errors and biases into 

the MHT estimates. Here, we combine data from hydrography, satellite altimetry and satellite gravimetry through 

joint spatiotemporal modelling to generate probabilistic estimates of MHT for the period 2004-2020 at 3-month 

resolution across 12 latitudinal sections of the Atlantic Ocean between 65o N and 35o S. Our approach leverages 

the higher spatial sampling of the satellite observations to compensate for the sparseness and irregular distribution 20 

of the hydrographic data, leading to significantly improved estimates of MHT compared to those derived from 

hydrographic data alone. The fusion of the various data sets is done using rigorous Bayesian statistical methods 

that account for the spatial resolution mismatch between data sets and ensure an adequate representation and 

propagation of uncertainty. Our estimates of MHT at 26o N agree remarkably well with estimates based on direct 

ocean observations from the RAPID array, in terms of both the magnitude and phase of the variability, with a 25 

correlation of 0.77 for quarterly (3-monthly) time series and 0.93 after applying a 5-quarter running mean. The 

time-mean MHT at 26o N is also captured by our approach, with a value of 1.17 PW [1.04,1.30] (5-95% credible 

interval). Estimates of MHT at other latitudes are also consistent with what we expect based on earlier estimates as 

well as on our current understanding of MHT in the Atlantic Ocean.   
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1 Introduction 30 

Changes of the Earth’s climate since the Industrial Revolution are primarily a result of the excess heat trapped in 

the climate system by the accumulation of greenhouse gases, leading to global warming. A substantial portion of 

this extra heat, over 90%, has been absorbed by the world’s oceans (Meyssignac et al., 2019; von Schuckmann et 

al., 2020), temporarily slowing the warming of the atmosphere, albeit at the cost of higher sea levels, accelerated 

ice sheet melting, and harm to marine ecosystems. However, the ocean’s role extends beyond being merely a 35 

passive thermal buffer against global warming. It also plays a central role in mediating the climate system response 

to greenhouse gas emissions by helping to shape – through heat redistribution – the pattern of sea-surface warming, 

on which climate feedback processes depend (Andrews et al., 2018; Dong et al., 2020). Ocean currents also play a 

crucial part in regulating the regional climate by transporting heat poleward from the tropics and then releasing it 

into the atmosphere at higher latitudes (Woollings et al., 2012; Buckley and Marshall, 2016; Zhang et al., 2019; 40 

Yin and Zhao, 2021). In the Atlantic Ocean, heat is transported northward throughout the basin by a vast system 

of ocean currents – the Atlantic meridional overturning circulation (AMOC) (Frajka-Williams et al., 2019) – 

carrying warm surface waters northward and cold waters southward at deeper levels. Importantly, the AMOC is 

capable of storing heat (and carbon dioxide) deep in the ocean where it can remain sequestered for centuries before 

resurfacing thousands of kilometers away. This unique capability endows the AMOC with the potential to affect 45 

the global climate over long time scales.  

Extensive research efforts in recent decades have been dedicated to monitoring the AMOC and meridional heat 

transport (MHT) through various multi-observational approaches (Frajka-Williams et al., 2019; Li et al., 2021), 

leading to significant progress in our understanding of these two critical climate-relevant factors (Srokosz et al., 

2021). Nevertheless, despite this progress, significant knowledge gaps persist, such as questions about the 50 

latitudinal coherence of the AMOC (and MHT) and whether it is weakening (Jackson et al., 2022; Piecuch & Beal, 

2023; Volkov et al., 2024), among other major concerns. Filling these remaining gaps is crucial to advancing our 

understanding of future climate change. However, ongoing efforts to achieve this are faced with challenges related 

to limitations in observing capability as well as in the methods currently being used for combining noisy and sparse 

data from multiple sources. This study is particularly motivated by those limitations and focuses, specifically in the 55 

context of quantifying MHT. 

Past changes in Atlantic MHT have been estimated mainly through two different approaches. The first approach, 

employed by both the RAPID/Meridional Overturning Circulation and Heat-flux Array/Western Boundary Time 

Series (hereafter RAPID) programme (Cunningham et al., 2007; Johns et al., 2011; McCarthy et al., 2015, Johns 
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et al., 2023) and the Overturning in the Subpolar North Atlantic Program (OSNAP) (Lozier et al., 2019; Li et al., 60 

2021), calculates MHT directly by integrating the product of the temperature and cross-sectional velocity across 

designated transbasin sections (26oN in RAPID and 50oN-60oN in OSNAP). Temperatures and velocities are 

estimated based on hydrographic data from transport mooring arrays, Argo profiling floats and, in the case of the 

ONSAP section, also ocean gliders. Heat transport through the Florida Straits in the RAPID section is estimated 

based on measurements from a submarine cable (Volkov et al. 2024). This approach is widely regarded as the gold 65 

standard for monitoring both MHT and the AMOC, but it still comes with limitations. In particular, such an 

observing array system is time-consuming and expensive to install and maintain, making it impractical for ocean-

wide monitoring. Consequently, estimates of MHT based on this approach are restricted to these two latitudes, and 

thus they are not sufficiently latitudinally dense to characterize the spatiotemporal structure of the MHT. 

The second approach, which is the focus of this study, attempts to fill these existing latitudinal gaps in observing. 70 

It consists of inferring ocean heat transport convergence (HTC) as a residual from the imbalance between changes 

in ocean heat content (OHC) and surface heat flux (HF). Here, we shall concern ourselves mainly with the 

estimation of OHC changes and will rely on estimates of HF derived elsewhere in the literature. However, it is 

important to emphasize that both components of the energy balance are crucial to the success of this approach in 

their own right, requiring their own thorough consideration. Most past studies derive OHC changes from gridded 75 

temperature (T) and salinity (S) data sets produced through objective analysis of hydrographic profiles from various 

instruments (e.g., Argo floats, bathythermographs, bottles, etc.) (Roberts et al, 2017; Cheng et al., 2020; von 

Schuckmann et al., 2020). While such profiles have almost ocean-wide coverage, they are spatially sparse 

(including the Argo era), almost non-existent below 2000 m, irregularly spaced, noisy and highly heterogenous 

across instruments in terms of accuracy. These data issues can introduce significant biases and uncertainties into 80 

the gridded T/S products and, by propagation, into the estimates of OHC changes, especially on regional scales, 

restricting the accuracy with which we can estimate MHT through this heat-budget approach. Some studies use T 

and S data from ocean reanalyses as an alternative to observations (Trenberth and Fasullo, 2017; Trenberth et al., 

2019), but such reanalyses have biases and uncertainties of their own and crucially depend on the availability of 

hydrographic data for assimilation, thus they face similar issues to in-situ observations. 85 

A promising solution to the issues discussed above, with a view to improving the accuracy of OHC estimates, is to 

combine hydrography-derived thermosteric (TS) and halosteric (HS) heights with sea level (SL) from satellite 

altimetry and ocean mass (OM) from satellite gravimetry, leveraging the relatively good spatial sampling of the 

satellite observations. The key idea is to exploit the fact that TS is directly linked to OHC and that SL is related to 
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TS through SL=TS+HS+OM. A special case of this approach arises when the focus is on estimating global average 90 

OHC because, on global scales, halosteric effects are negligible (Lowe and Gregory, 2006; Gregory et al., 2019) 

and thus TS (and OHC) can be derived from satellite data alone as the residual of SL and OM (Dieng et al., 2015; 

Meyssignac et al., 2019; Hakuba et al., 2021; Marti et al., 2022). However, the estimation of MHT requires 

knowledge of regional OHC changes and, on such scales, halosteric effects can no longer be ignored (Maes, 1998; 

Wang et al., 2017) and need to be estimated from hydrographic data. In this case, a straightforward combination of 95 

the satellite and hydrographic data is direct pointwise subtraction, where the operation TS=SL-OM-HS is 

performed independently at each grid point. This simple data-merging approach has already shown improvements 

over estimates of MHT based solely on hydrographic data (Meyssignac et al.; 2024), but it lacks a formal statistical 

framework to address the complexities of the three data sets. These complexities include data error structures, 

spatial dependencies and resolution mismatches, among others. For example, the three data sets differ in spatial 100 

resolutions, making them inherently incompatible without adjustments – a challenge known as the change of 

support problem (Gelfand et al., 2001; Gotway and Young, 2002). Moreover, each data set has unique and complex 

error structures in both time and space. Successfully integrating the three data sets requires accounting for both the 

resolution mismatch and the error structures within a statistically coherent framework that models all data sets and 

their associated uncertainties simultaneously and comprehensively. 105 

One of the first attempts to quantify MHT through joint modelling of hydrographic and satellite data was presented 

in the work of Kelly et al. (2014, 2016). They estimated HTCs by evaluating the heat budget over latitudinally-

bounded regions of the Atlantic Ocean based on data from hydrography, altimetry and gravimetry together with 

reanalysis-derived surface heat fluxes. They used a two-step procedure wherein they first calculated spatial 

averages over each of the regions independently for each data set and then assessed the heat budget through joint 110 

modelling of the spatially averaged time series. While conceptually simple, this procedure has several limitations. 

By first calculating spatial averages separately for each variable, the procedure ignores any spatial dependencies 

between the variables and loses the opportunity to leverage cross-variable spatial information, both of which can 

lead to suboptimal estimates of spatially averaged values. Also, such a modelling choice makes the estimation of 

uncertainties in the spatially averaged values challenging, often requiring ad-hoc or approximate methods. 115 

Here, we present a Bayesian hierarchical framework (see Cressie & Wikle (2011) for a general description of 

spatiotemporal hierarchical models) for estimating MHT that combines data from hydrography, altimetry and 

gravimetry in a statistically rigorous way. Our approach extends that of Kelly et al. (2016) by accounting for 

spatiotemporal dependencies between processes (i.e., TS, HS, and OM) and enabling information sharing across 
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the various data sets. This is achieved by simultaneous spatiotemporal modelling of the observational fields and 120 

their error structures, in contrast to time series modelling of spatially averaged values as done in Kelly et al. (2016). 

The idea of combining multi-source climatic data through spatiotemporal Bayesian modelling has been successfully 

used before, for example to assess Antarctic ice mass changes (Zammit-Mangion et al., 2014; Zammit-Mangion et 

al., 2015) and sea-level trends (Piecuch et al., 2018; Calafat et al., 2022), but to our knowledge has not been applied 

to MHT and merging hydrography, altimetry and gravimetry. Our approach overcomes the limitations of 125 

hydrography-only based analyses and addresses the issues associated with combining data from disparate sources, 

leading to more robust and accurate estimates of both OHC and MHT. Importantly, by considering error structures 

jointly, the hierarchical approach provides a coherent way to propagate uncertainty in the data, model and 

parameters through the analysis to the estimates of the MHT. We use our Bayesian hierarchical model (BHM) to 

produce observation-based probabilistic estimates of non-seasonal quarterly (3-month-averaged) MHT for the 130 

period 2004-2020 across 12 latitudinal sections over the Atlantic Ocean between 65o N and 35o S. The sections are 

shown in Fig. (1) and have been chosen either because other MHT or AMOC volume transport estimates are 

available, or because they are interesting oceanographically. 
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Figure 1. Latitude lines across which MHT is estimated using a spatiotemporal BHM. The coloured areas denote 135 

the regions over which the heat budgets are evaluated. Both the MHT across each latitude and the HTC in each 

budget region have been labelled with numbers and this is the notation that we follow in Section 5.1. 

2 Data 

2.1. Hydrography-derived TS and HS heights 

TS and HS heights are calculated using monthly gridded fields of T and S from the ISAS20 product (available at 140 

https://www.seanoe.org/data/00412/52367/) (Gaillard et al., 2016), which provides data on a 1/2° × 1/2° grid for 

the period January 2002 to December 2020 and is based solely on Argo profiles. ISAS20 also provides uncertainty 

estimates for the objectively analyzed T and S fields. While Argo floats can go as deep as 2000 m, only about 58% 

of the Atlantic profiles have data below 1900 m on average over the period 2004-2020 (lower than that in the early 

years of that period and higher in the most recent years). In contrast, about 72% of the profiles reach, on average, 145 

a depth of at least 1500 m (see also Wong et al., 2020). For this reason, we decide to use only T and S data from 

the surface to 1500 m in the calculation of TS and HS (the contribution from below 1500 m is accounted for by 

inflating the uncertainty in the TS and HS data, as explained later). It is also important to mention that we exclude 

the Gulf of Mexico and the Caribbean Sea in the evaluation of the heat budgets (Fig. 1) as there appears to be a 

problem with the hydrographic data from ISAS20 in those regions.  150 

TS and HS changes reflect the expansion and contraction of the water column induced by T and S variations, 

respectively. Assuming that such variations in T and S are small relative to the time-mean value, TS and HS 

anomalies can be calculated at each horizontal grid point (latitude – longitude) and for each month as follows (Gill 

and Niiler, 1973): 

𝑇𝑆 = ∫ 𝛼𝑇′𝑑𝑧
0

−1500 
                                                                                         (1) 155 

𝐻𝑆 = − ∫ 𝛽𝑆′𝑑𝑧
0

−1500
                                                                                       (2) 

where 𝛼 and 𝛽 are the coefficients of thermal expansion and haline contraction, respectively, and the prime denotes 

deviations from the time-mean fields (i.e., anomalies). The integration is carried out over the vertical coordinate 𝑧.  

To obtain uncertainty estimates for TS and HS, we use Monte Carlo simulation to propagate uncertainties in T and 

S through Eqs. (1) and (2). This procedure involves first generating random profiles of T and S at each horizontal 160 

grid point and for each month under the assumption that the errors provided for the gridded data are normally 
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distributed, where we allow for vertically correlated errors. Mathematically, the procedure would be expressed as 

follows:  

𝑇𝑖~𝑁(𝜇𝑇 , Σ𝑇)                                                                                          (3) 

𝑆𝑖~𝑁(𝜇𝑆 , Σ𝑆)                                                                                           (4) 165 

where the superscript ‘i’ denotes a random profile (𝑖 = 1, … , 100), 𝜇𝑇 and 𝜇𝑆 represent the means of the normal 

distributions which are set equal to the original gridded T and S values, and Σ𝑇 and Σ𝑆 are covariance matrices that 

encode the magnitude of the errors and their dependency in the vertical direction. The covariance matrices are 

specified by assuming an exponential model of the form Σ𝑛𝑚 = 𝜎𝑛𝜎𝑚𝑒−𝑑𝑛𝑚/𝑙, where 𝑑𝑛𝑚 is the distance between 

the n-th and m-th vertical levels, 𝜎𝑛 and 𝜎𝑚 are the error standard deviations provided by the gridded products at 170 

the corresponding levels, and 𝑙 is a vertical decorrelation length scale. We set 𝑙 equal to 100 m, based on the 

decorrelation length scales typically used in the objective analysis of Argo data (Good et al., 2013). 

Then, for each random profile 𝑇𝑖 and 𝑆𝑖 we calculate the corresponding TS and HS values by evaluating Eqs. (1) 

and (2). This yields 100 random samples of TS and HS at each grid point and for each month. The standard 

deviations of the random samples provide an estimate of the uncertainties associated with the TS and HS fields. To 175 

account for the contribution of waters below 1500 m to TS and HS we inflate the estimated uncertainty by 20%. 

2.2. SL from satellite altimetry 

The altimetry sea-level data are from the gridded sea surface height product (based on a stable two-satellite 

constellation) (SEALEVEL_GLO_PHY_CLIMATE_L4_MY_008_057) produced and distributed by the 

Copernicus Climate Change Service (C3S). These data are available at http://marine.copernicus.eu/ and are 180 

provided as daily fields on a 1/4° × 1/4° near global grid. For this study, C3S refers to the period from January 2004 

to December 2020. The C3S data are provided with all standard corrections applied, including corrections for 

tropospheric (wet and dry) and ionospheric path delays, sea state bias, tides (solid earth, ocean, loading, and pole), 

and barotropic atmospheric effects (wind and atmospheric pressure for periods<20 days and inverse barometer 

effects for longer periods). We also adjust the sea-level fields for glacial isostatic adjustment (GIA) using the 185 

estimates derived by Frederikse et al. (2020) as well as for deformation effects on the sea floor (+0.1 mm yr-1, 

spatially uniform) due to contemporary mass changes of the Greenland and Antarctic ice sheets, glaciers, and 

terrestrial water storage (Frederikse et al., 2017). 
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The altimetry data are affected by several sources of uncertainty (Prandi et al., 2021), including mapping errors, 

high-frequency errors arising from both orbit determination and any of the geophysical corrections mentioned 190 

above, low-frequency errors associated with the wet tropospheric correction, drift errors from orbit determination, 

inter-mission biases (from Jason-1 to Jason-2 and from Jason-2 to Jason-3), and errors from the GIA adjustment. 

We account for all these error source contributions. The mapping errors are provided by C3S as part of the gridded 

product whereas estimates for the other error sources are from Prandi et al. (2021) (available at 

https://www.seanoe.org/data/00637/74862/). Details of how these uncertainties are taken into account in the data 195 

fusion analysis are given in Section 3. 

2.3. OM from satellite gravimetry 

The OM data are based on measurements collected by the Gravity Recovery and Climate Experiment (GRACE). 

Here, we use the global time-variable gravity mascon solution (RL06v2.0) from the NASA Goddard Space Flight 

Center (GSFC) (Loomis et al., 2019), available at https://earth.gsfc.nasa.gov/geo/data/grace-mascons. The data 200 

span the period from April 2003 to December 2021 and are provided in the form of monthly mascons on an equal-

area 1° × 1° (at the equator) grid. Non-tidal ocean bottom pressure variations (GAD product) with their global ocean 

mean removed have been restored and a GIA correction has been applied, ensuring that the resulting OM data are 

comparable to the residual of altimetric SL and hydrography-derived TS+HS. The product supplies uncertainty 

estimates at each mascon, accounting for both serially uncorrelated errors due to leakage and stochastic noise and 205 

for leakage trends. 

2.4. Surface heat flux 

We use surface HF data from three products: 1) the Diagnosing Earth's Energy Pathways in the Climate system 

(DEEP-C, version 5) project (https://researchdata.reading.ac.uk/347/) (Liu et al., 2015; Liu and Allan, 2022), which 

provides monthly mean data on a 0.7° × 0.7° global grid for the period; 2) the ERA5 reanalysis 210 

(https://cds.climate.copernicus.eu) (Hersbach et al., 2023), which provides monthly means on a 1/4° × 1/4° grid; 

and 3) the NCEP/NCAR reanalysis (https://psl.noaa.gov/data/reanalysis/reanalysis.shtml) (Kalnay, 1996), which 

provides monthly mean data on a 2° × 2° global grid. DEEP-C is an observation-based and dedicated product that 

has been developed specifically for a robust estimation of the surface HF and thus, in principle, it is preferable to 

the reanalysis-based products, however, it only provides data up to November 2017. By including surface HF data 215 

from reanalyses, we can obtain estimates of MHT for the period 2004-2020. The reanalysis-based HF across the 

air-sea interface is calculated as the sum of radiative and turbulent fluxes from the reanalysis. None of the HF 
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products provides uncertainty estimates, thus we derive a measure of uncertainty from the spread across the three 

products as follows. In comparing the three HF products we note that the variability across the various products is 

very similar, but differences in the time-mean HF can be larger. For this reason, we obtain uncertainty estimates 220 

separately for the HF variability and the time-mean HF. The uncertainties associated with the HF variability are 

estimated as the standard deviation (SD) of the HF anomalies (with respect to the time mean) over the three products 

at each time step whereas those for the time-mean HF are computed as the SD of the time means across the three 

products. Note that for the period beyond November 2017, uncertainties are based solely on data from ERA5 and 

NCEP.  225 

2.5. Resolving the spatial resolution mismatch 

Here we aim to combine three data sets that are incompatible in terms of spatial resolution. Both the hydrographic 

data and the GRACE data are provided on relatively fine grids, but their effective spatial resolution is much lower 

than what such grids imply. In particular, monthly GRACE data can be regarded as spatial averages over a ~300 

km footprint (Tapley et al., 2019). The gridded hydrographic product is based on Argo profiles. Although such 230 

profiles represent point-level measurements, they are sparsely collected over the ocean with an average spatial 

separation of about 3 degrees (in any given month). This separation sets a practical limit to the smallest features 

that can be resolved (on average) by the Argo data. Additionally, the Argo-derived gridded data incorporates some 

degree of spatial smoothing due to the interpolation process, which is largely determined by the decorrelation 

lengths scales used by the gridding methods. Such length scales are typically on the order of 300 km (Good et al., 235 

2013), except within a few degrees of the equator where they are significantly larger. The effective resolution of 

the gridded altimetry data is higher than that of the GRACE and hydrographic data, although it varies with latitude. 

The decorrelation length scales used in the mapping of the altimetry data, which we take as a rough measure of 

spatial resolution, range from ~350 km in a low-latitude band (±15oN) to ~150 km poleward of this band (Pujol et 

al., 2016). In considering ways of resolving the resolution mismatch problem, it is important to remember that, 240 

here, we aim to assess heat budgets over large ocean regions and this only requires spatial averages of the relevant 

variables over such regions (i.e., we do not need point-level estimates). In this context, the simplest solution to the 

spatial support problem is to aggregate each of the three data sets into areal units (i.e., grid cells) of a size similar 

to the resolution of the coarsest resolution data. In this way, the aggregated data will all have the same level of 

spatial resolution and can then be combined using areal spatiotemporal modelling (Banerjee et al., 2014). In this 245 

study, we adopt this approach. 
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We set the size of the target areal units to 3° × 3° as this aligns with the decorrelation length scales used in the 

mapping of the hydrographic data as well as with the resolution of the GRACE data. For all three data sets, we 

aggregate the data by averaging the original grid cells over the target areal units through proportional area weighting 

(i.e., weights are computed as the proportion of the target areal unit that lies within each source grid cell). 250 

The uncertainties in the aggregated data are computed by propagating the source data uncertainties through the 

spatial averaging process using standard error propagation formulae. In particular, the error variance of the 

aggregated data at any given target cell is calculated as: 

𝜎2 = ∑ 𝑤𝑖
2𝜎𝑖

2𝑛
𝑖=1 + ∑ ∑ 𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗

𝑛
𝑗≠𝑖

𝑛
𝑖=1                                                                    (5) 

where 𝑤𝑖 is the weight assigned to the i-th source grid cell in the aggregation process, 𝜎𝑖 is the standard error of 255 

the source data at the i-th grid cell, and 𝜌𝑖𝑗 is the error correlation between the i-th and j-th source grid cells. Note 

that the correlations 𝜌𝑖𝑗 are not known exactly and thus they need to be approximated somehow. Here, we assume 

a spatial correlation function of the form 𝜌𝑖𝑗 = 𝑒−𝑑𝑖𝑗/𝑙, where 𝑑𝑖𝑗 is the geodesic distance between the centroids of 

the i-th and j-th source grid cells, and 𝑙 denotes a decorrelation length scale. For the GRACE data, we assume that 

errors are perfectly correlated in space. For the TS and HS data, we set 𝑙=300 km at latitudes poleward of 5o and 260 

𝑙=600 km otherwise (based on the decorrelation length scales used in the mapping process). Finally, for the 

altimetry data, we use different length scales depending on the type of error (see Section 2.2). For the interpolation 

errors, we set 𝑙=150 km at latitudes poleward of 15o and 𝑙=350 km otherwise (based on the length scales used in 

the original gridding of the data). The high-frequency errors are assumed to be spatially uncorrelated. For the errors 

associated with the wet tropospheric correction and the GIA adjustment, we set 𝑙=300 km. The drift errors and 265 

inter-mission biases are assumed to be perfectly correlated in space (over the length scales on which the spatial 

aggregation takes place). 

2.6. Considerations on data temporal resolution 

Although the data described above are available at monthly resolution, their effective temporal resolution is 

somewhat lower due to the relatively low sampling rate of the observations on which the gridded products are 270 

based. For example, most satellite altimeters have a repeat cycle that ranges from 10 days (e.g., Jason satellites) to 

35 days (e.g., Envisat satellite), whereas GRACE has a repeat cycle of 30 days. Argo floats provide a vertical 

profile once every 10 days. In practice, this means that the month-to-month variability in the gridded products 

exhibits significant levels of noise. Such noise at high frequencies can be greatly amplified by the time derivatives 

involved in the calculation of MHT (the amplification factor is proportional to frequency) and, in turn, can corrupt 275 

https://doi.org/10.5194/egusphere-2025-1216
Preprint. Discussion started: 21 March 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

 

our estimates of MHT. To minimize this issue, we trade off some temporal resolution for a significant reduction in 

noise by converting the monthly data to 3-month averages (i.e., to quarterly data: Jan-Feb-Mar, and so on). 

The uncertainties associated with the quarterly data are calculated by propagating the uncertainties in the monthly 

data using Eq. (5), where now the sub-indices i and j refer to the i-th and j-th months, respectively. For the 

uncertainties in TS and HS as well as for the high-frequency errors in the GRACE and altimetry data (and the errors 280 

in the wet tropospheric correction) we set 𝑤𝑖 = 1/3 and assume serially uncorrelated errors (𝜌𝑖𝑗 = 0). In contrast, 

the leakage trends in GRACE are, by definition, perfectly correlated in time and thus such errors are not reduced 

by the temporal averaging (their value remains the same). Similarly, for altimetry, the drift errors, inter-mission 

biases and GIA errors are all modelled as a linear trend error and thus they are also perfectly correlated in time. 

3. Bayesian hierarchical framework 285 

Here, we develop a Bayesian hierarchical framework that integrates observations from altimetry, GRACE, and 

hydrography together with surface HF data to estimate HTC from ocean heat budgets over a set of latitudinally-

bounded regions (see Fig.1). A schematic of the Bayesian model architecture is shown in Figure 2. The model is 

composed of two distinct but interconnected parts: one that models the spatiotemporal evolution of the sea-level 

components (TS, HS, and OM) based on the 3° × 3° areal units of quarterly (3-month-averaged) observations from 290 

hydrography, altimetry and GRACE; and another part that determines non-seasonal quarterly HTC as the residual 

of OHC tendency (derived using estimates of TS from the first component of the model) less surface HF over 

selected regions bounded by latitude lines (Fig. 1). The heat budgets are evaluated over all regions simultaneously, 

allowing for, but not enforcing, correlation in HTC between regions. It is important to note that the two parts 

described above are components of the same Bayesian model, i.e., we compute a single posterior distribution from 295 

which we derive expectation values (means and quantiles) for all the quantities of interest. We perform three 

different fits based on the three surface HF products (DEEP-C, ERA5 and NCEP), which hereafter we refer to, 

respectively, as BHM1, BHM2, BHM3. The solution BHM1 spans the period from the first quarter of 2004 to the 

second quarter of 2017, whereas the other two solutions cover the period from the first quarter of 2004 to the last 

quarter of December 2020. 300 
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Figure 2. Schematic of the Bayesian hierarchical framework used to estimate MHT. 

Our approach centers on the notion that the data, being observed with error, can be regarded as the sum of a true 

latent spatiotemporal process plus observation error. For example, the GRACE data can be viewed as noisy 

observations of the OM latent process, and similarly for all the other data sets. Here, the term process refers to a 305 

stochastic process (i.e., a collection of random variables indexed by either time, space or both), whereas the term 

latent process means that the process is not directly measured but inferred from noisy observations. The aim is then 

to separate the various latent processes (TS, HS, OM, and HTC) from the observational noise through joint 

statistical modelling of all the available data (i.e., hydrography, altimetry, GRACE and surface HF). By conducting 

joint modelling and accounting for spatial dependencies, we allow for information exchange both between 310 

observational data sets and across locations, improving the estimation of the true underlying process. The success 

of this approach relies on the careful representation of uncertainty, not least because the model uses uncertainty to 

decide which observations should have more influence. Furthermore, we need to consider not only uncertainty 

associated with measurement noise, but also uncertainty arising from limited knowledge of the latent process as 
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well as uncertainty in unknown parameters of the BHM such as decorrelation length scales and error variances. 315 

This problem can be conveniently formulated within a Bayesian hierarchical framework.  

Here, we develop a BHM with three layers (each layer takes the form of a probability model): 1) a data model that 

describes the distribution of the observations (SL, TS, HS, OM and HF) conditional on the latent processes; 2) a 

process model that describes the spatiotemporal evolution of the latent processes conditional on a set of parameters; 

and 3) a parameter model that describes the uncertainty in the model parameters and encodes any prior information 320 

that we have about the data and the processes. In our BHM, each component of sea level (i.e., TS, HS and OM) is 

modelled as the sum of three contributions, namely seasonal changes, variability, and a linear trend. The non-

seasonal HTC is modelled as the combination of variability, a linear trend and an intercept. Next, we describe each 

layer of the BHM, starting with the data layer. 

3.1. Observation layer. 325 

Let 𝐵 = {𝐵𝑖 | 𝑖 = 1, … , 𝑁} denote the set of 3° × 3° cells on which the observations have been aggregated, and 

𝑧𝑝,𝑡(𝐵𝑖) denote an observation on the i-th cell at time step t, for 𝑝 ∈ 𝑃 where 𝑃 = {𝑆𝐿, 𝑇𝑆, 𝐻𝑆, 𝑂𝑀}. The data layer 

of the BHM for the sea-level observations can then be written as: 

𝑧𝑝,𝑡(𝐵𝑖) = 𝑦𝑝,𝑡(𝐵𝑖) + 𝑎𝑝(𝐵𝑖) + 𝑏𝑝(𝐵𝑖)𝑡𝟏{𝑆𝐿,𝑂𝑀}(𝑝) + 𝑏̂𝑝(𝐵𝑖)𝑡̂𝟏{𝑂𝑀}(𝑝) + 𝑒𝑝,𝑡(𝐵𝑖),     𝑖 = 1, … , 𝑁     𝑡 = 1, … , 𝑇          

(6) 330 

where 𝑦𝑝,𝑡(𝐵𝑖) denote the true latent process of interest. The term 𝑎𝑝(𝐵𝑖) represents data offsets, modelled as 

independent and identically distributed (i.i.d.) normal random variables with variance of 1 m2, 𝑎𝑝(𝐵𝑖) ~
𝑖𝑖𝑑

𝑁(0,1). 

Such offsets are introduced to cater for the fact that the sea-level height data are referenced to different vertical 

datums. The variables 𝑏𝑝(𝐵𝑖)  denote data error trends, modelled as i.i.d. normal random variables, 

𝑏𝑝(𝐵𝑖) ~
𝑖𝑖𝑑

𝑁(0, 𝛾𝑝
2(𝐵𝑖)). These include orbit errors, inter-mission biases and GIA uncertainties in the altimetry data, 335 

and leakage trends in GRACE. The factor 𝟏𝐴(𝑥)  is an indicator function such that 𝟏𝐴(𝑥) = 1  if 𝑥 ∈ 𝐴 , and 

𝟏𝐴(𝑥) = 0 otherwise. The variables 𝑏̂𝑂𝑀(𝐵𝑖) are introduced to account for a gradual increase in instrumental noise 

during the final years of the GRACE mission and are modelled in the process layer. The variable 𝑡̂ is defined such 

that 𝑡̂ = 𝑡 if 𝑡 corresponds to the years between (and including) 2012 and 2017, and 𝑡̂ = 0 otherwise. Finally, 

𝑒𝑝,𝑡(𝐵𝑖) are assumed to be serially and spatially uncorrelated observation errors, 𝑒𝑝,𝑡(𝐵𝑖) ~
𝑖𝑛𝑑

𝑁(0, 𝜎𝑝,𝑡
2 (𝐵𝑖)). The 340 

variances 𝛾𝑝
2(𝐵𝑖) and 𝜎𝑝,𝑡

2 (𝐵𝑖) are specified based on the data uncertainties calculated as described in Section 2. 
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Next, we define the data model for the surface HF data. Let 𝑅 = {𝑅𝑗 | 𝑗 = 1, … , 𝑀} denote the set of regions over 

which the heat budgets are evaluated, and 𝑄𝑡(𝑅𝑗) be the non-seasonal surface HF into the ocean at time 𝑡 spatially 

averaged over 𝑅𝑗. We express 𝑄𝑡(𝑅𝑗) as the sum of its time-mean value, 〈𝑄𝑡(𝑅𝑗)〉, plus a fluctuating part, 𝑄𝑡
′(𝑅𝑗), 

as this allows us to model uncertainty in both components explicitly. With this, the observation layer for the HF 345 

data is written as a heat budget: 

𝑄𝑡
′(𝑅𝑗) = 𝐻𝑡

′(𝑅𝑗)  − 𝑈𝑡
′(𝑅𝑗) + 𝑣𝑡(𝑅𝑗),          𝑗 = 1, … , 𝑀                                                      (7) 

〈𝑄𝑡(𝑅𝑗)〉 = 〈𝐻𝑡(𝑅𝑗) − 𝑈𝑡(𝑅𝑗)〉 + 𝑞(𝑅𝑗),         𝑗 = 1, … , 𝑀                                                    (8) 

where 𝐻𝑡(𝑅𝑗) is the non-seasonal OHC tendency spatially averaged over 𝑅𝑗, 𝑈𝑡(𝑅𝑗) is the HTC through the lateral 

boundaries of 𝑅𝑗 , and 𝑣𝑡(𝑅𝑗)  and 𝑞(𝑅𝑗) are serially and spatially uncorrelated observation errors, 350 

𝑣𝑡(𝑅𝑗) ~
𝑖𝑛𝑑

𝑁(0, 𝜂𝑡
2(𝑅𝑗)) and  𝑞(𝑅𝑗) ~

𝑖𝑛𝑑
𝑁(0, 𝛿2(𝑅𝑗)). The SDs 𝜂𝑡(𝑅𝑗) and 𝛿(𝑅𝑗) are set equal to the SD of the HF 

over the three HF products (DEEP-C, ERA5 and NCEP) for the anomalies (at each time step) and the time mean, 

respectively. The prime ′ denotes deviation with respect to the time mean. 

3.2. Process layer. 

Here, we describe the process layer of the BHM. The degree to which the noise increases during the final years of 355 

the GRACE mission (see Equation 6) appears to be similar for cells that are close to one another. To capture this 

spatial dependency, the variables 𝑏̂𝑂𝑀(𝐵𝑖) are assumed to follow a spatial conditional autoregressive (CAR) 

process (Cressie and Wikle, 2011): 

 𝑏̂𝑂𝑀(𝐵𝑖) ~𝑀𝑉𝑁(0, (𝐼𝑁 − 𝛼𝑏𝐾)−1𝜏𝑏
2𝐷)                                                                  (9) 

where 𝑀𝑉𝑁 denotes a multivariate normal distribution, 𝐼𝑁 is the identity matrix of size 𝑁, 𝛼𝑏 is a parameter that 360 

controls the degree of spatial autocorrelation (to be estimated), 𝐾 is the adjacency matrix (𝑘𝑖𝑖 = 0, 𝑘𝑖𝑗 = 1 if 𝐵𝑖 

and 𝐵𝑗 are neighbors, and 𝑘𝑖𝑗 = 0 otherwise), 𝜏𝑏 is a SD parameter (to be estimated), and 𝐷 = 𝑑𝑖𝑎𝑔(1/𝑛𝑖) is an 

𝑁x 𝑁 diagonal matrix with 𝑛𝑖 equal to the number of neighbors of the i-th grid cell. Two cells are considered to be 

neighbors if the distance between their centroids is no larger than two times the size of the cells (i.e., 6 degrees). 

CAR models are classes of Markov random fields commonly used to describe spatial autocorrelation in areally-365 

aggregated data.  

Seasonal changes in the sea-level components are modelled as: 
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𝑥𝑝,𝑡
Seas(𝐵𝑖) = 𝑎1,𝑝(𝐵𝑖) cos(𝜔𝑡) + 𝑎2,𝑝(𝐵𝑖) sin(𝜔𝑡)            𝑝 ∈ 𝑃\{𝑆𝐿}                                     (10) 

where 𝜔 is the angular velocity of the annual cycle, and 𝑎𝑘,𝑝(𝐵𝑖), for 𝑘 = 1,2, are CAR processes: 

 𝑎𝑘,𝑝(𝐵𝑖)~𝑀𝑉𝑁(0, (𝐼𝑁 − 𝛼𝑎,𝑝𝐾)
−1

𝜏𝑎,𝑝
2 𝐷)                                                                  (11)  370 

The non-seasonal variability in TS, HS and OM is modelled as spatial fields that evolve through time according to 

a first-order autoregressive moving average (ARMA) process. Here, we note that the TS and HS components of 

sea level tend to covary inversely. To capture this spatiotemporal interaction between TS and HS, we use the 

method of coregionalization (Gelfand et al., 2004), which assumes that the interaction is local. With this, the model 

for the non-seasonal variability can be written as: 375 

     𝑥𝑝,𝑡
Var(𝐵𝑖) = 𝜌𝑝𝑥𝑝,𝑡−1

Var (𝐵𝑖) + 𝜃𝑝𝑚𝑝,𝑡−1(𝐵𝑖) + 𝑚𝑝,𝑡(𝐵𝑖) − 𝜓𝑚𝑇𝑆,𝑡(𝐵𝑖)𝟏{𝐻𝑆}(𝑝)         𝑝 ∈ 𝑃\{𝑆𝐿}             (12) 

where 𝜌𝑝  and 𝜃𝑝 , for 𝑝 ∈ 𝑃\{𝑆𝐿}, are spatially constant coefficients that control, respectively, the degree of 

temporal autocorrelation and past-noise dependence, 𝜓 is a positive parameter (to be estimated) that determines 

the strength of the interaction between the TS and HS fields, and 𝑚𝑝,𝑡(𝐵𝑖)  are CAR processes, 

𝑚𝑝,𝑡(𝐵𝑖)~𝑀𝑉𝑁(0, (𝐼𝑁 − 𝛼𝑚,𝑝𝐾)
−1

𝜏𝑚,𝑝
2 𝐷). 380 

The linear trends in the latent sea-level processes are modelled as spatial fields, where again we capture the 

interaction between the TS and HS fields through coregionalization: 

𝑥𝑝,𝑡
Trend(𝐵𝑖) = (𝑔𝑝(𝐵𝑖) − 𝜙𝑔𝑇𝑆(𝐵𝑖)𝟏{𝐻𝑆}(𝑝)) 𝑡,            𝑝 ∈ 𝑃\{𝑆𝐿}                                               (13) 

where 𝜙 is an interaction parameter (to be estimated), and 𝑔𝑝(𝐵𝑖) are CAR processes, 𝑔𝑝(𝐵𝑖)~𝑀𝑉𝑁(𝜇𝑔,𝑝, (𝐼𝑁 −

𝛼𝑔,𝑝𝐾)
−1

𝜏𝑔,𝑝
2 𝐷), for 𝑝 ∈ 𝑃\{𝑆𝐿}. The mean of the CAR process, 𝜇𝑔,𝑝, is set to 0 for 𝑝 ∈ {𝑇𝑆, 𝐻𝑆} and to 2 mm yr-385 

1 for 𝑝 ∈ {𝑂𝑀} based on the spatially averaged trends from the observational data (computed using ordinary least 

squares). 

With all the contributions now defined, the true latent process for each sea-level component is given by: 

𝑦𝑝,𝑡(𝐵𝑖) = 𝑥𝑝,𝑡
Seas(𝐵𝑖) + 𝑥𝑝,𝑡

Var(𝐵𝑖) + 𝑥𝑝,𝑡
Trend(𝐵𝑖),      𝑝 ∈ 𝑃\{𝑆𝐿}                                          (14)  

𝑦𝑆𝐿,𝑡(𝐵𝑖) = 𝑦𝑇𝑆,𝑡(𝐵𝑖) + 𝑦𝐻𝑆,𝑡(𝐵𝑖) + 𝑦𝑂𝑀,𝑡(𝐵𝑖)                                                            (15) 390 

The non-seasonal OHC tendency spatially averaged over 𝑅𝑗  is computed as follows. Let 𝑦𝑇𝑆,𝑡
𝐷𝑒𝑠(𝑅𝑗)  be the 

deseasonalized TS at time 𝑡 spatially averaged over 𝑅𝑗, computed as: 
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    𝑦𝑇𝑆,𝑡
𝐷𝑒𝑠(𝑅𝑗) =

∑ 𝑤𝑖𝑗(𝑥𝑇𝑆,𝑡
Var (𝐵𝑖)+𝑥𝑇𝑆,𝑡

Trend(𝐵𝑖))𝑁
𝑖=1

∑ 𝑤𝑖𝑗
𝑁
𝑖=1

,           𝑗 = 1, … , 𝑀                                             (16) 

where the weights 𝑤𝑖𝑗 are computed as the proportion of the region 𝑅𝑗 area that lies within the grid cell 𝐵𝑖. The 

non-seasonal OHC tendency is then calculated using central differences as: 395 

𝐻𝑡(𝑅𝑗) =
𝜌0𝑐(𝑅𝑗)

𝛼(𝑅𝑗)
(

 𝑦𝑇𝑆,𝑡+1
𝐷𝑒𝑠 (𝑅𝑗)− 𝑦𝑇𝑆,𝑡−1

𝐷𝑒𝑠 (𝑅𝑗)

2
),           𝑗 = 1, … , 𝑀                                          (17) 

where 𝜌0 is a reference seawater density, 𝑐(𝑅𝑗) is the time-mean heat capacity of seawater spatially averaged over 

𝑅𝑗, and 𝛼(𝑅𝑗) is the time-mean coefficient of thermal expansion spatially averaged over 𝑅𝑗 and vertically averaged 

over the top 1500 m of the ocean (averaging the coefficient of thermal expansion over different water depths has 

almost no effect on the phase  of the estimated HTC variability and only a small effect on its amplitude). 400 

Finally, the HTC through the lateral boundaries of 𝑅𝑗, 𝑈𝑡(𝑅𝑗), is modelled as the sum of three contributions, namely 

variability, a linear trend, and an intercept. The variability in 𝑈𝑡(𝑅𝑗) is allowed to be correlated across regions, and 

thus we modeled it as a spatial CAR process that evolves through time according to a first-order ARMA process: 

𝑢𝑡
Var(𝑅𝑗) = 𝜌𝑈𝑢𝑡−1

Var(𝑅𝑗) + 𝜃𝑈𝑓𝑡−1(𝑅𝑗) + 𝑓𝑡(𝑅𝑗)                                                                (18) 

where 𝜌𝑈 and 𝜃𝑈 are spatially constant coefficients that control, respectively, the degree of autocorrelation and 405 

past-noise dependence, and 𝑓𝑡(𝑅𝑗) is a spatial CAR process 𝑓𝑡(𝑅𝑗)~𝑀𝑉𝑁(0, (𝐼𝑀 − 𝛼𝑈𝐿)−1𝜏𝑈
2 𝐷𝑈). Here, 𝐿 is the 

𝑀x  𝑀  adjacency matrix, and 𝐷𝑈 = 𝑑𝑖𝑎𝑔(1/𝑛𝑗) is an 𝑀x  𝑀  diagonal matrix with 𝑛𝑗  equal to the number of 

neighbors of the j-th region. In this case, two regions are considered to be neighbors if they share a common border.    

Both the linear trend and the intercept are modelled as i.i.d. normal random variables with SD of 1.3 W m-2 yr-1 and 

127 W m-2, 𝑢Trend(𝑅𝑗) ~
𝑖𝑖𝑑

𝑁(0, 1.32) and 𝑢Intc(𝑅𝑗) ~
𝑖𝑖𝑑

𝑁(0, 1272). 410 

With this, the HTC is calculated as: 

𝑈𝑡(𝑅𝑗) = 𝑢𝑡
Var(𝑅𝑗) + 𝑡𝑢Trend(𝑅𝑗) + 𝑢Intc(𝑅𝑗) .                                                             (19) 

3.3. Parameter layer 

The BHM is completed by defining the parameter layer. The prior distributions ascribed to the hyperparameter of 

the BHM are summarized in Table 1. Here, we provide justification for the informative the priors. First, the priors 415 

assigned to the ARMA parameters (𝜌∗ and 𝜃∗) ensure that the ARMA processes are stationary and invertible by 

enforcing the following conditions: 0 < 𝜌∗ < 1  and |𝜃∗| < 1 . The constraint applied to the autocorrelation 
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parameters of the CAR processes, 𝛼∗ < 𝜆𝑚𝑎𝑥
−1 , is necessary to ensure that the covariance matrix of the CAR 

processes is positive definite. The choice of the location parameter for the truncated normal distributions assigned 

to the SDs of the CAR trend processes (i.e., 𝜏𝑔,𝑇𝑆, 𝜏𝑔,𝐻𝑆 and 𝜏𝑔,𝑂𝑀) is based on the SD of the trend fields derived 420 

from the observations. Finally, the interaction parameters (𝜓 and 𝜙) are assumed to be positive since the TS and 

HS components tend to be anticorrelated, with values likely ranging from 0 to 1. 

Table 1. Prior distributions ascribed to the hyperparameters of the BHM. The constant  𝜆𝑚𝑎𝑥 is the maximum 

eigenvalue of the corresponding adjacency matrix (𝐾 for 𝛼𝑎,𝑝, 𝛼𝑚,𝑝, 𝛼𝑔,𝑝 and 𝛼𝑏 , and 𝐿 for 𝛼𝑈). The notation 

half-N denotes a half normal distribution whereas trunc-N(,)[a,b] represents a truncated normal distribution with 425 

support in the interval [a,b]. 

Parameter Units Description Prior distribution 

𝜌𝑝  𝑝 ∈ {𝑇𝑆, 𝐻𝑆, 𝑂𝑀, 𝑈} - ARMA autocorrelation  Uniform(0,1) 

𝜃𝑝  𝑝 ∈ {𝑇𝑆, 𝐻𝑆, 𝑂𝑀, 𝑈} - ARMA past noise  Uniform(−1,1) 

𝛼𝑎,𝑝, 𝛼𝑚,𝑝, 𝛼𝑔,𝑝, 𝛼𝑏 , 𝛼𝑈  

𝑝 ∈ {𝑇𝑆, 𝐻𝑆, 𝑂𝑀} 
- CAR autocorrelation  Uniform(0,𝜆𝑚𝑎𝑥

−1 ) 

𝜏𝑎,𝑝, 𝜏𝑚,𝑝   

𝑝 ∈ {𝑇𝑆, 𝐻𝑆, 𝑂𝑀} 
m CAR standard deviation  half-N(0,1) 

𝜏𝑏   mm yr-1 CAR standard deviation half-N(0,102) 

𝜏𝑔,𝑇𝑆   mm yr-1 CAR standard deviation trunc-N(3.5,1)[0, ∞] 

𝜏𝑔,𝐻𝑆   mm yr-1 CAR standard deviation trunc-N(2.0,0.32)[0, ∞] 

𝜏𝑔,𝑂𝑀   mm yr-1 CAR standard deviation trunc-N(1.3,0.32)[0, ∞] 

𝜏𝑈   W m-2 CAR standard deviation half-N(0,1272) 

𝜓, 𝜙   - Interaction TS-HS half-N(0,1) 

 

3.4. Inference 

Inference in the BHM is accomplished by numerically sampling from the posterior distribution of the processes 

and parameters given the observational data using the No-U-Turn Sampler (NUTS) as implemented by the 430 

Numpyro probabilistic programming language (Phan et al., 2019). NUTS is a Markov chain Monte Carlo (MCMC) 

method that uses Hamiltonian dynamics to enable rapid exploration of the posterior distribution. We run the 
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sampler with four chains of 1000 iterations each (warm-up=1000) for a total of 4000 post-warm-up draws. Such 

draws represent samples from the posterior distribution. 

4. BHM evaluation 435 

4.1. MCMC diagnostics 

We begin the evaluation of the model by assessing how accurately the MCMC samples characterize the posterior 

distribution. To this aim, we use a number of MCMC diagnostics that are designed to diagnose problems with the 

sampler and assess convergence and mixing. In this context, convergence means that the Markov chains have 

reached a stationary distribution that coincides with the true posterior distribution, whereas mixing refers to the 440 

number of iterations required for a Markov chain to approximate the posterior distribution adequately. While there 

are no definitive tests of convergence, we can use various diagnostics to determine whether Markov chains appear 

to have converged. One of such diagnostics is the potential scale reduction statistic (Gelman and Rubin, 1992), 𝑅̂, 

which checks whether Markov chains initialized from different values have the same distribution (a necessary, 

although insufficient, condition for convergence). Mathematically, 𝑅̂ compares the sample variances both within 445 

and between Markov chains. When all the Markov chains have converged to the same distribution, values of 𝑅̂ 

should be close to 1 for all model parameters. While there is no universally accepted cut-off point for convergence 

based on 𝑅̂ , values of  𝑅̂  >1.2 are typically considered to be suggestive of non-convergence. In addition to 

convergence, evaluating the mixing of the Markov chains is also important as this can be poor in complex models 

due to high autocorrelation of the MCMC samples. The higher the autocorrelation the larger the MCMC standard 450 

error (given a fixed number of iterations), and thus the larger the error of the estimates derived from the posterior 

samples. As a measure of mixing and autocorrelation, we use estimates of the effective sample size, 𝑛eff, for each 

hyperparameter (Gelman et al., 2014). In general, a value of 𝑛eff per iteration <0.001 is indicative of poorly mixing 

chains and suggestive of possible biased estimates. 

We find 𝑅̂ to be <1.2 for all hyperparameters in the BHM, suggesting that the Markov chains have converged to 455 

the equilibrium distribution and are providing a good approximation to the posterior distribution. Additionally, the 

𝑛eff per iteration is >0.001 for all hyperparameters with an average value ranging from 0.21 to 0.31 (depending on 

the BHM fit), indicating low autocorrelation and good mixing. 

We use additional diagnostic tools, specific to Hamiltonian Monte Carlo, that offer information about the ability of 

the NUTS sampler to explore the posterior distribution. These tools include divergent transitions and tree-depth 460 

saturation. The presence of divergences would indicate that the sampler has run into regions of challenging 
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posterior geometry that it is unable to explore well, whereas the appearance of tree-depth saturations would indicate 

that the sampler is terminating prematurely to avoid excessively long execution time thus leaving regions of the 

posterior distribution unexplored. We confirm that none of the iterations in the three model fits (BHM1, BHM2 

and BHM3) showed any divergent transitions or tree-depth saturations, giving us additional confidence in the 465 

reliability of our Bayesian solutions. 

4.2. Goodness of fit 

Here, we evaluate the performance of our Bayesian model by examining its ability to accurately fit the observational 

data. We begin by examining the residuals from the observation model (Equation 6), focusing on the SL process 

as this integrates all the sea-level components (i.e., 𝑧𝑆𝐿,𝑡 − 𝑦𝑆𝐿,𝑡 − 𝑎𝑆𝐿 − 𝑏𝑆𝐿𝑡). The observation model assumes 470 

that the residuals are normally distributed, and thus gross violations of this assumption would signal the inadequacy 

of the model to describe the underlying structure of the data. It is, therefore, important to confirm the 

appropriateness of the normality assumption. Here, we do this by testing the null hypothesis that the residuals 

conform to a normal distribution using the Anderson-Darling test (Anderson & Darling, 1954). We apply the test 

separately to the time series of residuals at each grid cell and for each iteration. The test fails to reject the null 475 

hypothesis (5% significance level) in about 95% of the cases (4000 iterations x 641 cells) for all three BHM fits, 

confirming the validity of the normality assumption. We also verify that there are no systematic departures between 

the Bayesian solutions and the observations. In particular, we find that the time-mean of the residuals across all the 

grid cells are distributed symmetrically around zero, with a mean value <0.4 mm and a SD of about 4 mm. 

Both the MCMC diagnostics and the residual analysis presented above indicate a good fit of the Bayesian model 480 

to the observational data. Despite this, it is still important to check that the posterior inferences from the model 

look plausible when compared to the observational data. We do this by plotting estimates of SL, TS, HS and OM 

against observational time series at a randomly selected grid cell (Fig. 3). We show results only for the solution 

based on the surface HF from DEEP-C (i.e., BHM1) but estimates from the other three Bayesian solutions show a 

similar performance. All the sea-level components show considerable inter-annual variability, although such 485 

variability is significantly larger in the SL and the TS with peak-to-peak fluctuations that can reach more than 20 

cm as compared to 8 cm for the HS and 2 cm for the OM. While the inter-annual variability is similar between the 

observations and the Bayesian solutions, as we would expect, there are also significant differences between the 

two, especially for the TS and HS. These differences reflect the relatively large uncertainties associated with the 

TS and HS observations and also demonstrate a crucial point: the ability of the BHM to constrain the TS and HS 490 

estimates based on information from the SL and OM data. This ability leads to more accurate estimates of TS and 
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HS, in turn, allowing us to obtain more reliable estimates of MHT and other quantities of interest that depend on 

TS and HS.  

For completeness, we have also plotted the linear trend estimates derived from the BHM on top of the time series 

(Fig. 3). In assessing the trends, it is important to note that the Bayesian trends are not directly comparable to least 495 

squares trends calculated from individual observed time series. Bayesian trends aim to capture the true underlying 

trend, free from the influence of AR1 variability and noise, whereas least squares trends will be affected by these 

factors. In practice, this means that the Bayesian trends will not necessarily be entirely aligned with what visually 

appears to be the tendency of the time series, although in general we would expect some degree of alignment, 

especially if the trend is large relative to the variability. In the example of the figure, the trends do agree to a large 500 

extent with the long-term tendency displayed by the time series, including in the OM time series for which the 

trend is the dominant signal. 

 

Figure 3. Quarterly (3-month-averaged) time series of (a) sea level, (b) thermosteric, (c) halosteric and (d) ocean 

mass as derived from BHM1 at a randomly selected grid cell (red) together with the corresponding observed time 505 

series (black). Bayesian estimates of the linear trend at the same grid cell (blue) are also shown for the SL and its 

components. The shading around the red and blue lines represents the 5-95% credible interval.  
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5. Atlantic meridional heat transport 

5.1. Calculation of the MHT 

In this section, we describe how estimates of MHT over the Atlantic Ocean are derived from our Bayesian estimates 510 

of HTC. The BHM does not provide MHT directly as an output, but this can be calculated by meridionally 

integrating the HTCs. The integration can be started from any of the twelve latitude lines (see Fig. 1), but here we 

choose (for reasons that will become obvious later) to start from the northernmost latitude (i.e., 65oN). In this case, 

the northward heat transport across the i-th latitudinal section at time 𝑡, MHT𝑖,𝑡 (using the same labeling as shown 

in Fig. 1), can be calculated as: 515 

MHT𝑖,𝑡 = MHT1,𝑡 + ∑ HTC𝑗,𝑡
𝑖−1
𝑗=1  ,           𝑖 = 1, … , 𝑀 + 1                                               (20) 

 where MHT1,𝑡 is the northward heat transport at 65oN and HTC𝑗,𝑡 is the heat transport convergence in region 𝑅𝑗 at 

time 𝑡 (i.e., 𝑈𝑡(𝑅𝑗)). Clearly, to evaluate Eq. (20) at any latitude line we need an estimate of MHT1,𝑡, but such an 

estimate is not available. Let’s now suppose that we set MHT1,𝑡 = 0 and then evaluate Eq. (20). This will produce 

estimates of MHT that will be accurate at any latitude where the true transport, MHT𝑖,𝑡
True, is large relative to the 520 

true transport at 65oN, i.e. where the following condition is met: MHT𝑖,𝑡
True ≫ MHT1,𝑡

True. While the validity of this 

approximation cannot be tested at all latitudes due to the lack of MHT estimates, it can be assessed at 26oN by 

comparing estimates of MHT from the RAPID array (at 26oN) with estimates from the OSNAP array (at 50oN-

60oN). Such comparison shows that the SD of the MHT time series (3-month means; overlapping period) is over 

four times larger at RAPID than at OSNAP, whereas the time-mean MHT is more comparable in magnitude with 525 

values of 1.19 PW (RAPID) and 0.51 PW (OSNAP). This indicates that ignoring the variability of MHT1 in Eq. 

(20) will provide a very good approximation to the MHT variability at 26oN, assuming that the MHT variability at 

65oN is similar to (or smaller than) that at the latitude of OSNAP. Ignoring the time-mean value of MHT1 will, 

however, incur a larger error. Considering this, we approximate Eq. (20) as follows (we drop the temporal subscript 

𝑡 to simplify notation): 530 

MHT𝑖 = 〈MHTOSNAP〉 − 〈HTC1〉 + ∑ HTC𝑗
𝑖−1
𝑗=1  ,       𝑖 = 2, … , 𝑀 + 1                                    (21) 

where the angle brackets denote the time mean and 〈MHTOSNAP〉 is the time-mean MHT from the OSNAP array 

over the period 2014-2018 (i.e., it is set equal to 0.506 PW). Hence, in Eq. (21) we are essentially setting MHT1 =

0 and the time-mean value of MHT at 60oN equal to 〈MHTOSNAP〉. In making this approximation, we have implicitly 
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assumed that the time-mean MHT at 60oN is constant over the period of our analysis, which appears to be a 535 

reasonable assumption based on the lack of a significant trend in the OSNAP MHT time series.  

At this point, one might wonder why not start the integration of the HTCs at 26oN instead of 65oN and then just use 

the MHT from the RAPID array to fix the constant of integration, as this would circumvent the need to make any 

approximations. This, of course, is straightforward to do but it raises its own issues. First, this would make our 

estimates dependent on the RAPID-derived MHT and, thus, would leave us with almost no observation-based 540 

estimates with which to validate our results. Second, the magnitude of the MHT variability at 26oN appears to be 

significantly larger than that at middle and high latitudes of the North Atlantic, and thus any discrepancies between 

our HTCs and those that would be consistent with the MHT from RAPID would manifest as large errors at higher 

latitudes where the MHT variability is relatively small. Of course, the approximation used in Eq. (21) will also 

introduce errors at latitudes where the MHT variability is small, but the advantage in this case is that our estimates 545 

of MHT are entirely independent from the RAPID-derived MHT.         

5.2. MHT at 26oN 

Here, we compare our Bayesian estimates of MHT at 26o N calculated using Eq. (21) with the MHT from the 

RAPID array. The comparison is done for two different periods: 2004-2017 for BHM1, and 2004-2020 for BHM2 

and BHM3. In the following, any estimates derived from the BHM solutions will be summarized by the posterior 550 

mean and the 5-95% credible interval (CI), where the CIs will be denoted by square brackets. 

Before proceeding with the comparison, we note a recent study by Volkov et al. (2024) reporting on a spurious 

drift in the submarine cable measurements of the Florida Current that are used in the calculation of the RAPID-

derived AMOC and MHT. In this study, they show that, after correcting for this spurious drift, the negative trend 

that is detectable in the uncorrected RAPID AMOC time series becomes barely statistically significant. This drift 555 

is also certain to affect the RAPID-derived MHT time series, but no correction for the MHT is publicly available 

at the time of writing this article. In view of this, we choose to remove a linear trend from the time series of MHT 

before the comparison to ensure that the comparison metrics reflect the true degree of concordance between the 

Bayesian and the RAPID estimates. That said and given the current debate on whether or not the AMOC is 

weakening, it is worth mentioning that of the three Bayesian estimates of MHT at 26o N, only BHM3 shows a 560 

statistically significant trend, and even then only marginally. More precisely, the MHT trends derived from BHM1, 

BHM2, BHM3 for the overlapping period 2004-2017 are, respectively, 0.06 PW decade-1 [-0.12,0.25], 0.09 PW 

decade-1 [-0.09,0.26], and 0.21 PW decade-1 [0.02,0.39]. Given the strong correlation between the AMOC and the 
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MHT at 26oN (Johns et al., 2023), the lack of a statistically significant trend in two of the three Bayesian solutions 

appears to support the findings of Volkov et al. (2024). 565 

Moving now to the comparison, we begin by showing the quarterly MHT time series as derived from the BHM 

together with the MHT from RAPID (Fig. 4a-c). Note that these time series represent 3-month-averaged values 

without any smoothing or scaling applied to them (i.e., they are the direct solutions from the BHM, except for the 

removal of a linear trend). Visually, it is already obvious that the variability in the MHT from RAPID is very well 

captured by the three Bayesian solutions, in terms of both the phase and the magnitude of the variability. This 570 

includes the prominent drop in MHT around 2010, the magnitude and timing of which are both captured with 

remarkable precision by the Bayesian solutions. More quantitatively, the correlation between the RAPID and 

Bayesian time series for the common period 2004-2017 is very significant with values of 0.77, 0.72 and 0.74 for 

BHM1, BHM2 and BHM3 respectively. For the period 2004-2020, the correlation is 0.63 for both BHM2 and 

BHM3. The lower correlation observed during the longer period of 2004-2020 is primarily due to a discrepancy in 575 

2020. During this year, the Bayesian estimates indicate a decline in MHT, while the RAPID time series shows a 

pronounced spike. This discrepancy is the most significant inconsistency between the Bayesian and RAPID time 

series throughout the entire period. The SD of the MHT time series, which provides a measure of the magnitude of 

the variability, is also completely consistent between the Bayesian solutions and the MHT from RAPID, with values 

of (common period 2004-2017) 0.19±0.02 PW (RAPID), 0.19 PW [0.16,022] (BHM1), 0.18 PW [0.15,0.21] 580 

(BHM2) and 0.19 PW [0.16,0.22] (BHM3) (the uncertainty in the RAPID SD represents the frequentist 90% 

confidence interval). 
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Figure 4. Quarterly (3-month-averaged) time series of MHT at 26o N (red line) as derived from (a) BHM1, (b) 

BHM2, and (c) BHM3 together with the RAPID-derived MHT (black line). The shading around the Bayesian time 585 

series represents the 5-95% CI. (d) Time-mean MHT from solutions BHM1, BHM2 and BHM3, summarized by 

the posterior mean (central mark), interquartile range (box) and 5–95% CI (whiskers). The CIs associated with the 

Bayesian estimates of the time-mean MHT reflect both statistical uncertainty due to the variability of the MHT 

time series as well as uncertainty from all sources considered in the BHM. For comparison, box and whiskers for 

the time-mean MHT from RAPID are also shown (in this case the quantiles have been computed based on the 590 

uncertainty provided by Johns et al. (2023), assuming a normal distribution). 

Focusing now on the time-mean MHT, we can already sense from the comparison of the time series (Fig. 4a-c) that 

BHM1 and BHM3 match the time-mean MHT from RAPID very well, whereas BHM2 displays a slight, almost 

imperceptible, downward offset. This visual intuition is confirmed by calculating the time-mean value of the time 

series and its uncertainty for the common period 2004-2017 (Fig. 4d). The time-mean MHT from RAPID is 595 

1.18±0.20 PW (90% confidence interval), whereas for BHM1, BHM2 and BHM3 we obtain values of 1.17 PW 

[1.04,1.30], 1.05 PW [0.93,1.18] and 1.16 PW [1.03,1.29]. In short, the time-mean MHT from BHM1 and BHM3 

is in perfect agreement with that from RAPID, while that from BHM2 is slightly lower but still consistent with 

RAPID when considering the uncertainty. 
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To complete our comparison, we evaluate the agreement between the Bayesian solutions and the RAPID-derived 600 

MHT at lower frequencies by applying a 5-quarter running mean to the MHT time series (Fig. 5). For clarity, and 

since we have already discussed the time-mean MHT, we now present the anomalies with respect to the time mean. 

We find that, at such lower frequencies, the agreement with RAPID is also remarkably good, with correlations for 

the common period 2004-2017 of 0.93, 0.81 and 0.86 for BHM1, BHM2 and BHM3, respectively. For the longer 

period of 2004-2020, the correlation for BHM2 and BHM3 is slightly lower with a value of 0.76. The best 605 

agreement with the MHT from RAPID is observed again for BHM1, which shows almost a perfect match (Fig. 5a), 

capturing both the timing and magnitude of nearly all the prominent features in the RAPID-derived time series, 

including the big drop around 2010 and the recovery afterwards. One of the most significant discrepancies between 

the Bayesian and RAPID time series occurs during the period 2005–2007, when the latter consistently exhibits 

higher MHT values. However, the elevated MHT values in the RAPID time series around 2006 are expected to 610 

decrease following the application of the drift correction proposed by Volkov et al. (2024). This adjustment would 

likely improve the agreement between the RAPID estimates and the Bayesian solutions.    

 

Figure 5. Same as Figs. 4a-c but with a 5-quarter running mean applied to the time series and the time-mean MHT 

removed. 615 
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5.3. MHT over the Atlantic Ocean 

Although the excellent agreement of the Bayesian estimates with the MHT from RAPID at 26o N does not guarantee 

a similar performance at other latitudes, it does give us confidence that the estimates are robust and likely to reflect 

true changes. In this section we show our estimates of MHT across eleven latitude lines over the Atlantic (we do 

not include 65o N as our estimates are set to zero at this latitude), both in their quarterly (3-month-averaged) 620 

resolution (Fig. 6a) and after applying a 5-quarter running mean (Fig. 6b). Note that, unlike for the comparison 

with the MHT from RAPID, here we do not remove a linear trend from any of the time series. While long records 

of MHT from direct ocean observations are restricted to only RAPID at 26o N, several earlier studies have produced 

estimates of MHT with good spatial coverage indirectly as the residual from energy budgets. Here, for comparison 

and as an additional check on our approach, we plot estimates from one of such studies (Trenberth et al., 2019) on 625 

top of ours, although this comparison is only possible for low-pass filtered time series because estimates from 

Trenberth et al. (2019) are only available as 12-month running means.     

Looking at the quarterly MHT time series (Fig. 6a), we note several interesting features. First, MHT estimates from 

the three Bayesian solutions are very similar to one another at all latitudes, both in terms of phase and magnitude 

of the variability. Indeed, the correlation over the overlapping period 2004-2017 for all pairs of (detrended) time 630 

series from BHM1, BHM2 and BHM3 is > 0.9 in most cases, whereas differences in the SD of the time series are 

always smaller than 25% of the SD value. In comparing the three solutions, we also note that BHM3 shows slightly 

larger MHT values than BHM2 in the last years at most latitudes. This is primarily due to a small difference in the 

long-term trend between the two solutions rather than differences in variability. Comparing now the MHT time 

series from different latitudes, we note that the amplitude of the MHT fluctuations tends to increase gradually from 635 

north to south. For example, taking the SD of the time series as a measure of variability, we find that SD values for 

BHM1 range from 0.02 PW [0.02,0.03] at 60o N to a maximum value of 0.29 PW [0.24,0.34] at 35o S. Similar SD 

values are found for BHM2 and BHM3. Peak-to-peak fluctuations can be as large as 0.7 PW at 26o N and 1.5 PW 

at both 35o S and 25o S. The MHT fluctuations show a strong latitudinal coherence within two bands of latitudes, 

namely between 35o N and 16o N and from 5o N to 35o S. Such bands are not entirely decoupled from one another, 640 

but the MHT coherence within a band is much stronger than between bands. In particular, the event of 2010, which 

is so prominent in the MHT time series at 26o N, is also clearly visible at 16o N but much less so at 5o N. The lack 

of coherence south of 16°N during this event can be attributed to its main underlying cause − a southward shift of 

the North Atlantic subtropical gyre driven by a southward displacement of the mid-latitude westerlies (Evans et al., 

2017) – the effects of which were largely confined to the mid-latitude regions with limited influence further south. 645 
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Figure 6. (a) Quarterly (3-month-averaged) time series of MHT anomalies across the latitudinal sections denoted 

on the vertical axis as estimated by BHM1 (red), BHM2 (blue) and BHM3 (yellow). (b) Same as panel (a) but with 

a 5-quarter running mean applied to the time series. For comparison, estimates of MHT from Trenberth et al. (2019) 650 

across the same sections are also shown in black. 

Turning now our attention to the low-pass filtered time series (Fig. 6b), we note that again the three Bayesian 

solutions are in good agreement. The tendency of BHM3 to show higher MHT values in the last years compared 

to BHM2 is more noticeable in the smoothed time series since the short-term variability has been filtered out, but 

it is still mostly due to differences in the long-term trend between the two solutions. Just like for the quarterly 655 
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values, the magnitude of the fluctuations increases southward, although differences in magnitude across latitudes 

are smaller. The bands of latitudinal coherence are essentially the same as noted for the quarterly values. Overall, 

the Bayesian estimates are in good agreement with the time series of Trenberth et al., (2019) over the period 2004-

2016, with correlation values of (maximum across BHM1, BHM2 and BHM3; detrended time series) 0.49 (60o N), 

0.69 (55o N), 0.67 (45o N), 0.79 (35o N), 0.81 (26o N), 0.76 (16o N), 0.71 (5o N), 0.71 (5o S), 0.72 (11o S), and 0.63 660 

(25o S). There are, however, noticeable differences in the strength of the variability between the two estimates at 

some latitudes. In particular, the size of the fluctuations is significantly larger in our estimates than in those of 

Trenberth et al. (2019) at all latitudes south of the equator. 

Finally, it is also interesting to plot the time-mean MHT from the three Bayesian solutions across all the latitudinal 

sections of the Atlantic (Fig. 7). For comparison, observation-based estimates from the RAPID array (at 26o N), 665 

Trenberth et al. (2019) as denoted by T19, and Ganachaud & Wunsch (2003) as denoted by GW03 are also shown. 

The time-mean MHT is computed over the period 2004-2017 for the three Bayesian solutions and RAPID, 2004-

2016 for T19, and 1990-1996 for GW03. Focusing first on the Bayesian estimates, we note that the time-mean 

MHT is positive, and thus northward, at all latitudes, achieving its maximum value between 26o N and 16o N 

depending on the solution. Overall, the latitudinal structure of the time-mean MHT is very similar across the three 670 

Bayesian solutions but there can be differences in the actual values (i.e., the posterior means). More precisely, the 

three solutions are in very good agreement in the 60o N−26o N latitude band, but south of 26o N the spread becomes 

wider, with BHM3 showing considerably higher positive values than BHM1 and BHM2. The largest difference 

between BHM3 and the other two Bayesian solutions is found at 35o S where BHM3 gives a value of 0.72 PW 

[0.47,0.97] compared to 0.36 PW [0.13,0.59] and 0.20 PW [-0.03,0.44] for BHM1 and BHM2, respectively. Note 675 

that the Bayesian CIs tend to become wider as we move southwards. This reflects both increased MHT variability 

as well as larger differences between surface HF products (recall that the uncertainty in the surface HF data has 

been calculated as the spread over the three HF products). 

Taking BHM1 as our best solution − given its reliance on an observation-based HF product and its superior 

agreement with RAPID − we find that the time-mean MHT has a value of 0.51 PW [0.50,0.52] at 60o N (recall this 680 

value is set to match the time-mean MHT from the OSNAP array), which gradually increases southward reaching 

a maximum value of 1.17 PW [1.04,1.30] at 26o N, before decreasing again to a minimum value of 0.36 PW 

[0.13,0.59] at 35o S. This latitudinal structure of the time-mean MHT aligns well with the other observation-based 

estimates (RAPID, T19 and GW03), although noticeable differences exist in the values. Among all the estimates 

at 26o N, BHM1 shows the closest agreement with RAPID, while GW03 displays higher values (1.27 PW) and T19 685 

lower values (1.05 PW). Overall, the Bayesian estimates align more closely with T19 than with GW03. In fact, 
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GW03 consistently shows higher values than all the other estimates across most latitude, including RAPID, 

although this might be because the GW03 estimates refer to a different period. 

 

Figure 7. Time-mean MHT derived from BHM1 (red), BHM2 (blue) and BHM3 (yellow) along with the associated 690 

5-95% CIs (whiskers) at multiple latitudes of the Atlantic Ocean. The CIs reflect both statistical uncertainty due to 

the variability of the MHT time series as well as uncertainty from all sources considered in the BHM. Observation-

based estimates from the RAPID array, Trenberth et al. (2019) as denoted by T19, and Ganachaud & Wunsch 

(2003) as denoted by GW03 are also shown. The Bayesian solutions have been slightly shifted in latitude for better 

visualisation, but they all correspond to the same latitude. The confidence intervals associated with the RAPID 695 

(90% interval) and GW03 (1-sigma interval) estimates are derived from the values provided in the corresponding 

studies. 

6. Data availability 

The Bayesian estimates of MHT and HTC are available at Zenodo via https://doi.org/10.5281/zenodo.14931921. (At the 

moment, access to files is restricted but will be made open once the paper is accepted for publication. In the meantime, files 700 
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can be accessed via the link: 

https://zenodo.org/records/14931921?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjY0MGEyOWVhLWQwYjYtNDIxNi1hN

GI0LTE1YmUwYjZmMjgwZCIsImRhdGEiOnt9LCJyYW5kb20iOiJhMzdmMzA5NTgzOGQxNDhlM2QxZDZlMzcxODI

3YjFkNiJ9.qIn7PtJ9B9wBa-a3jlU3py-6lrCnEKRp60OTjJq5mc3uGRL8cbabbAt0CeyXXZUurqRV7sH8HsfwugDR7ISu9g) 

7. Conclusions 705 

Here, we have generated observation-based probabilistic estimates of MHT for the period 2004-2020 at 3-month-

mean resolution across 12 latitudinal sections of the Atlantic Ocean between 65o N and 35o S. The MHT has been 

calculated based on estimates of HTC which, in turn, have been inferred as a residual from the difference between 

OHC tendency and surface HF through joint spatiotemporal modelling of observations from hydrography, satellite 

altimetry and satellite gravimetry. We have produced three different Bayesian solutions based on three different 710 

surface HF products, namely DEEP-C, ERA5 and NCEP. 

Our estimates of MHT agree remarkably well with estimates based on direct ocean observations from the RAPID 

array at 26o N, capturing both the magnitude and phase of the MHT variability in the RAPID time series with high 

fidelity. The time-mean MHT at 26o N is also very well captured by the three Bayesian solutions. The solution 

based on DEEP-C (BHM1) shows the closest agreement to RAPID-derived MHT, with a correlation of 0.77 for 715 

the quarterly time series and 0.93 for low-pass filtered (5-quarter running mean) time series. Such correlation (0.93) 

is noticeably higher than the correlations reported by previous studies for annual or 12-month low-pass filtered 

data, such as 0.54 by Meyssignac et al. (2024) for the period 2005-2018, 0.66 by Liu et al. (2020) for 2008-2016, 

or 0.72 by Mayers et al. (2022) for 2004-2016. This demonstrates the importance and benefit of accounting for 

spatiotemporal dependencies when combining hydrographic and satellite measurements. 720 

The MHT variability is highly consistent across BHM1, BHM2 and BHM3 at all latitudes, both in terms of phase 

and magnitude, indicating that estimates of the MHT variability are robust to the choice of the surface HF product. 

In contrast to the variability, differences in the time-mean MHT across the three Bayesian solutions can be relatively 

large, especially in the South Atlantic and particularly between BHM1/BHM2 and BHM3. Given that the only 

difference among the three Bayesian solutions is the surface HF product, these results demonstrate that the surface 725 

HF makes an important contribution to the time-mean MHT and highlight the importance to our approach of having 

accurate, unbiased estimates of such a quantity. We have found that the magnitude of the variability tends to grow 

gradually from north to south, with peak-to-peak fluctuations that can reach 1.5 PW at the southernmost latitudinal 

sections. The MHT variability is not coherent across the whole Atlantic Ocean but instead covaries within, although 

not between, two distinct bands of latitudes, namely between 35o N and 16o N and from 5o N to 35o S. Regarding 730 
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the time-mean MHT, all three Bayesian solutions show northward MHT across the entire Atlantic Ocean, with a 

latitudinal profile that is characterized by relatively small transport in the South Atlantic Ocean, particularly south 

of 11o S, and maximum transport between 26o N and 16o N. 

Our results are exceptionally good if we accept the agreement with RAPID-derived MHT as a measure of 

performance, but there are some limitations that the users of these estimates need to be aware of. The first one is 735 

that our estimates of MHT have been derived by assuming no variability in the MHT at 65o N. As discussed earlier, 

this assumption will produce very accurate estimates of MHT variability over most of the Atlantic Ocean, but the 

incurred errors will be larger at high latitudes of the North Atlantic where the MHT variability is smaller in 

magnitude, particularly north of 45o N. Additionally, while estimates of the time-mean MHT are not affected by 

this assumption, it is important to remember that the time-mean MHT at 60o N has been set equal to that derived 740 

from the OSNAP array over the period 2014-2018. This assumes a constant time-mean MHT at 60o N over the 

analysis period (2004-2020), and thus deviations from this premise will introduce an error into the time-mean MHT 

at all the other latitudes. That said, such an error is expected to be very small based on the absence of a trend in the 

MHT time series from OSNAP and the excellent agreement with the RAPID-derived MHT at 26o N. Finally, it is 

also important to note that our estimates are derived from observational data spatially aggregated into 3° × 3° areal 745 

units, hence our approach is unlikely to resolve variations in MHT between latitude lines spaced by less than 3°.   
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