10

15

20

25

https://doi.org/10.5194/egusphere-2025-1216
Preprint. Discussion started: 21 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Estimates of Atlantic meridional heat transport from spatiotemporal
fusion of Argo, altimetry and gravimetry data

Francisco M. Calafat™?, Parvathi Vallivattathillam?, Eleanor Frajka-Williams®

IPhysics Department, University of the Balearic Islands, Palma, 07122, Spain
2Marine Physics and Ocean Climate, National Oceanography Centre, Liverpool, L3 5DA, UK
3Institute of Oceanography, University of Hamburg, 20146, Germany

Correspondence to: Francisco M. Calafat (francisco.mcalafat@uib.es)

Abstract. Understanding how changes in Atlantic meridional heat transport (MHT) and the Earth’s climate relate
to one another is crucial to our ability to predict the future climate response to anthropogenic forcing. Attaining
this understanding requires continuous and accurate records of MHT across the whole Atlantic. While such records
can be obtained through direct ocean observing systems, these systems are expensive to install and maintain and
thus, in practice, records of MHT derived in this way are restricted to a few latitudes. An alternative approach,
based on hydrographic and satellite components of the global ocean observing system, consists of inferring heat
transport convergence as a residual from the difference between ocean heat content (OHC) changes and surface
heat flux. In its simplest form, this approach derives the OHC from hydrographic observations alone, however these
observations are spatially sparse and unevenly distributed, which can introduce significant errors and biases into
the MHT estimates. Here, we combine data from hydrography, satellite altimetry and satellite gravimetry through
joint spatiotemporal modelling to generate probabilistic estimates of MHT for the period 2004-2020 at 3-month
resolution across 12 latitudinal sections of the Atlantic Ocean between 65° N and 35° S. Our approach leverages
the higher spatial sampling of the satellite observations to compensate for the sparseness and irregular distribution
of the hydrographic data, leading to significantly improved estimates of MHT compared to those derived from
hydrographic data alone. The fusion of the various data sets is done using rigorous Bayesian statistical methods
that account for the spatial resolution mismatch between data sets and ensure an adequate representation and
propagation of uncertainty. Our estimates of MHT at 26° N agree remarkably well with estimates based on direct
ocean observations from the RAPID array, in terms of both the magnitude and phase of the variability, with a
correlation of 0.77 for quarterly (3-monthly) time series and 0.93 after applying a 5-quarter running mean. The
time-mean MHT at 26° N is also captured by our approach, with a value of 1.17 PW [1.04,1.30] (5-95% credible
interval). Estimates of MHT at other latitudes are also consistent with what we expect based on earlier estimates as

well as on our current understanding of MHT in the Atlantic Ocean.
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1 Introduction

Changes of the Earth’s climate since the Industrial Revolution are primarily a result of the excess heat trapped in
the climate system by the accumulation of greenhouse gases, leading to global warming. A substantial portion of
this extra heat, over 90%, has been absorbed by the world’s oceans (Meyssignac et al., 2019; von Schuckmann et
al., 2020), temporarily slowing the warming of the atmosphere, albeit at the cost of higher sea levels, accelerated
ice sheet melting, and harm to marine ecosystems. However, the ocean’s role extends beyond being merely a
passive thermal buffer against global warming. It also plays a central role in mediating the climate system response
to greenhouse gas emissions by helping to shape — through heat redistribution — the pattern of sea-surface warming,
on which climate feedback processes depend (Andrews et al., 2018; Dong et al., 2020). Ocean currents also play a
crucial part in regulating the regional climate by transporting heat poleward from the tropics and then releasing it
into the atmosphere at higher latitudes (Woollings et al., 2012; Buckley and Marshall, 2016; Zhang et al., 2019;
Yin and Zhao, 2021). In the Atlantic Ocean, heat is transported northward throughout the basin by a vast system
of ocean currents — the Atlantic meridional overturning circulation (AMOC) (Frajka-Williams et al., 2019) —
carrying warm surface waters northward and cold waters southward at deeper levels. Importantly, the AMOC is
capable of storing heat (and carbon dioxide) deep in the ocean where it can remain sequestered for centuries before
resurfacing thousands of kilometers away. This unique capability endows the AMOC with the potential to affect

the global climate over long time scales.

Extensive research efforts in recent decades have been dedicated to monitoring the AMOC and meridional heat
transport (MHT) through various multi-observational approaches (Frajka-Williams et al., 2019; Li et al., 2021),
leading to significant progress in our understanding of these two critical climate-relevant factors (Srokosz et al.,
2021). Nevertheless, despite this progress, significant knowledge gaps persist, such as questions about the
latitudinal coherence of the AMOC (and MHT) and whether it is weakening (Jackson et al., 2022; Piecuch & Beal,
2023; Volkov et al., 2024), among other major concerns. Filling these remaining gaps is crucial to advancing our
understanding of future climate change. However, ongoing efforts to achieve this are faced with challenges related
to limitations in observing capability as well as in the methods currently being used for combining noisy and sparse
data from multiple sources. This study is particularly motivated by those limitations and focuses, specifically in the

context of quantifying MHT.

Past changes in Atlantic MHT have been estimated mainly through two different approaches. The first approach,
employed by both the RAPID/Meridional Overturning Circulation and Heat-flux Array/Western Boundary Time
Series (hereafter RAPID) programme (Cunningham et al., 2007; Johns et al., 2011; McCarthy et al., 2015, Johns
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et al., 2023) and the Overturning in the Subpolar North Atlantic Program (OSNAP) (Lozier et al., 2019; Li et al.,
2021), calculates MHT directly by integrating the product of the temperature and cross-sectional velocity across
designated transbasin sections (26°N in RAPID and 50°N-60°N in OSNAP). Temperatures and velocities are
estimated based on hydrographic data from transport mooring arrays, Argo profiling floats and, in the case of the
ONSAP section, also ocean gliders. Heat transport through the Florida Straits in the RAPID section is estimated
based on measurements from a submarine cable (Volkov et al. 2024). This approach is widely regarded as the gold
standard for monitoring both MHT and the AMOC, but it still comes with limitations. In particular, such an
observing array system is time-consuming and expensive to install and maintain, making it impractical for ocean-
wide monitoring. Consequently, estimates of MHT based on this approach are restricted to these two latitudes, and

thus they are not sufficiently latitudinally dense to characterize the spatiotemporal structure of the MHT.

The second approach, which is the focus of this study, attempts to fill these existing latitudinal gaps in observing.
It consists of inferring ocean heat transport convergence (HTC) as a residual from the imbalance between changes
in ocean heat content (OHC) and surface heat flux (HF). Here, we shall concern ourselves mainly with the
estimation of OHC changes and will rely on estimates of HF derived elsewhere in the literature. However, it is
important to emphasize that both components of the energy balance are crucial to the success of this approach in
their own right, requiring their own thorough consideration. Most past studies derive OHC changes from gridded
temperature (T) and salinity (S) data sets produced through objective analysis of hydrographic profiles from various
instruments (e.g., Argo floats, bathythermographs, bottles, etc.) (Roberts et al, 2017; Cheng et al., 2020; von
Schuckmann et al., 2020). While such profiles have almost ocean-wide coverage, they are spatially sparse
(including the Argo era), almost non-existent below 2000 m, irregularly spaced, noisy and highly heterogenous
across instruments in terms of accuracy. These data issues can introduce significant biases and uncertainties into
the gridded T/S products and, by propagation, into the estimates of OHC changes, especially on regional scales,
restricting the accuracy with which we can estimate MHT through this heat-budget approach. Some studies use T
and S data from ocean reanalyses as an alternative to observations (Trenberth and Fasullo, 2017; Trenberth et al.,
2019), but such reanalyses have biases and uncertainties of their own and crucially depend on the availability of

hydrographic data for assimilation, thus they face similar issues to in-situ observations.

A promising solution to the issues discussed above, with a view to improving the accuracy of OHC estimates, is to
combine hydrography-derived thermosteric (TS) and halosteric (HS) heights with sea level (SL) from satellite
altimetry and ocean mass (OM) from satellite gravimetry, leveraging the relatively good spatial sampling of the

satellite observations. The key idea is to exploit the fact that TS is directly linked to OHC and that SL is related to
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TS through SL=TS+HS+OM. A special case of this approach arises when the focus is on estimating global average
OHC because, on global scales, halosteric effects are negligible (Lowe and Gregory, 2006; Gregory et al., 2019)
and thus TS (and OHC) can be derived from satellite data alone as the residual of SL and OM (Dieng et al., 2015;
Meyssignac et al., 2019; Hakuba et al., 2021; Marti et al., 2022). However, the estimation of MHT requires
knowledge of regional OHC changes and, on such scales, halosteric effects can no longer be ignored (Maes, 1998;
Wang et al., 2017) and need to be estimated from hydrographic data. In this case, a straightforward combination of
the satellite and hydrographic data is direct pointwise subtraction, where the operation TS=SL-OM-HS is
performed independently at each grid point. This simple data-merging approach has already shown improvements
over estimates of MHT based solely on hydrographic data (Meyssignac et al.; 2024), but it lacks a formal statistical
framework to address the complexities of the three data sets. These complexities include data error structures,
spatial dependencies and resolution mismatches, among others. For example, the three data sets differ in spatial
resolutions, making them inherently incompatible without adjustments — a challenge known as the change of
support problem (Gelfand et al., 2001; Gotway and Young, 2002). Moreover, each data set has unique and complex
error structures in both time and space. Successfully integrating the three data sets requires accounting for both the
resolution mismatch and the error structures within a statistically coherent framework that models all data sets and

their associated uncertainties simultaneously and comprehensively.

One of the first attempts to quantify MHT through joint modelling of hydrographic and satellite data was presented
in the work of Kelly et al. (2014, 2016). They estimated HTCs by evaluating the heat budget over latitudinally-
bounded regions of the Atlantic Ocean based on data from hydrography, altimetry and gravimetry together with
reanalysis-derived surface heat fluxes. They used a two-step procedure wherein they first calculated spatial
averages over each of the regions independently for each data set and then assessed the heat budget through joint
modelling of the spatially averaged time series. While conceptually simple, this procedure has several limitations.
By first calculating spatial averages separately for each variable, the procedure ignores any spatial dependencies
between the variables and loses the opportunity to leverage cross-variable spatial information, both of which can
lead to suboptimal estimates of spatially averaged values. Also, such a modelling choice makes the estimation of

uncertainties in the spatially averaged values challenging, often requiring ad-hoc or approximate methods.

Here, we present a Bayesian hierarchical framework (see Cressie & Wikle (2011) for a general description of
spatiotemporal hierarchical models) for estimating MHT that combines data from hydrography, altimetry and
gravimetry in a statistically rigorous way. Our approach extends that of Kelly et al. (2016) by accounting for

spatiotemporal dependencies between processes (i.e., TS, HS, and OM) and enabling information sharing across
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the various data sets. This is achieved by simultaneous spatiotemporal modelling of the observational fields and
their error structures, in contrast to time series modelling of spatially averaged values as done in Kelly et al. (2016).
The idea of combining multi-source climatic data through spatiotemporal Bayesian modelling has been successfully
used before, for example to assess Antarctic ice mass changes (Zammit-Mangion et al., 2014; Zammit-Mangion et
al., 2015) and sea-level trends (Piecuch et al., 2018; Calafat et al., 2022), but to our knowledge has not been applied
to MHT and merging hydrography, altimetry and gravimetry. Our approach overcomes the limitations of
hydrography-only based analyses and addresses the issues associated with combining data from disparate sources,
leading to more robust and accurate estimates of both OHC and MHT. Importantly, by considering error structures
jointly, the hierarchical approach provides a coherent way to propagate uncertainty in the data, model and
parameters through the analysis to the estimates of the MHT. We use our Bayesian hierarchical model (BHM) to
produce observation-based probabilistic estimates of non-seasonal quarterly (3-month-averaged) MHT for the
period 2004-2020 across 12 latitudinal sections over the Atlantic Ocean between 65° N and 35°S. The sections are
shown in Fig. (1) and have been chosen either because other MHT or AMOC volume transport estimates are

available, or because they are interesting oceanographically.
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Figure 1. Latitude lines across which MHT is estimated using a spatiotemporal BHM. The coloured areas denote
the regions over which the heat budgets are evaluated. Both the MHT across each latitude and the HTC in each

budget region have been labelled with numbers and this is the notation that we follow in Section 5.1.

2 Data
2.1. Hydrography-derived TS and HS heights

TS and HS heights are calculated using monthly gridded fields of T and S from the ISAS20 product (available at
https://www.seanoe.org/data/00412/52367/) (Gaillard et al., 2016), which provides data on a 1/2° x 1/2° grid for
the period January 2002 to December 2020 and is based solely on Argo profiles. ISAS20 also provides uncertainty

estimates for the objectively analyzed T and S fields. While Argo floats can go as deep as 2000 m, only about 58%
of the Atlantic profiles have data below 1900 m on average over the period 2004-2020 (lower than that in the early
years of that period and higher in the most recent years). In contrast, about 72% of the profiles reach, on average,
a depth of at least 1500 m (see also Wong et al., 2020). For this reason, we decide to use only T and S data from
the surface to 1500 m in the calculation of TS and HS (the contribution from below 1500 m is accounted for by
inflating the uncertainty in the TS and HS data, as explained later). It is also important to mention that we exclude
the Gulf of Mexico and the Caribbean Sea in the evaluation of the heat budgets (Fig. 1) as there appears to be a

problem with the hydrographic data from ISAS20 in those regions.

TS and HS changes reflect the expansion and contraction of the water column induced by T and S variations,
respectively. Assuming that such variations in T and S are small relative to the time-mean value, TS and HS
anomalies can be calculated at each horizontal grid point (latitude — longitude) and for each month as follows (Gill
and Niiler, 1973):

TS = [°,, aT'dz (1)

0 /
HS = —f_lSOOﬁS dz (2)
where a and S are the coefficients of thermal expansion and haline contraction, respectively, and the prime denotes

deviations from the time-mean fields (i.e., anomalies). The integration is carried out over the vertical coordinate z.

To obtain uncertainty estimates for TS and HS, we use Monte Carlo simulation to propagate uncertainties in T and
S through Egs. (1) and (2). This procedure involves first generating random profiles of T and S at each horizontal

grid point and for each month under the assumption that the errors provided for the gridded data are normally
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distributed, where we allow for vertically correlated errors. Mathematically, the procedure would be expressed as

follows:

T'~N(ur,Xr) 3

Si”’N(#s, ) 4)
where the superscript " denotes a random profile (i = 1, ..., 100), uy and ug represent the means of the normal
distributions which are set equal to the original gridded T and S values, and X and X are covariance matrices that
encode the magnitude of the errors and their dependency in the vertical direction. The covariance matrices are
specified by assuming an exponential model of the form Z,,,,, = 0,,0,,e ~%m/!, where d,,,, is the distance between
the n-th and m-th vertical levels, ,, and a,, are the error standard deviations provided by the gridded products at

the corresponding levels, and [ is a vertical decorrelation length scale. We set [ equal to 100 m, based on the

decorrelation length scales typically used in the objective analysis of Argo data (Good et al., 2013).

Then, for each random profile T¢ and S we calculate the corresponding TS and HS values by evaluating Egs. (1)
and (2). This yields 100 random samples of TS and HS at each grid point and for each month. The standard
deviations of the random samples provide an estimate of the uncertainties associated with the TS and HS fields. To

account for the contribution of waters below 1500 m to TS and HS we inflate the estimated uncertainty by 20%.

2.2. SL from satellite altimetry

The altimetry sea-level data are from the gridded sea surface height product (based on a stable two-satellite
constellation) (SEALEVEL_GLO _PHY_CLIMATE_L4 MY_008_057) produced and distributed by the

Copernicus Climate Change Service (C3S). These data are available at http://marine.copernicus.eu/ and are

provided as daily fields on a 1/4° x 1/4° near global grid. For this study, C3S refers to the period from January 2004
to December 2020. The C3S data are provided with all standard corrections applied, including corrections for
tropospheric (wet and dry) and ionospheric path delays, sea state bias, tides (solid earth, ocean, loading, and pole),
and barotropic atmospheric effects (wind and atmospheric pressure for periods<20 days and inverse barometer
effects for longer periods). We also adjust the sea-level fields for glacial isostatic adjustment (GIA) using the
estimates derived by Frederikse et al. (2020) as well as for deformation effects on the sea floor (+0.1 mm yr?,
spatially uniform) due to contemporary mass changes of the Greenland and Antarctic ice sheets, glaciers, and

terrestrial water storage (Frederikse et al., 2017).
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The altimetry data are affected by several sources of uncertainty (Prandi et al., 2021), including mapping errors,
high-frequency errors arising from both orbit determination and any of the geophysical corrections mentioned
above, low-frequency errors associated with the wet tropospheric correction, drift errors from orbit determination,
inter-mission biases (from Jason-1 to Jason-2 and from Jason-2 to Jason-3), and errors from the GIA adjustment.
We account for all these error source contributions. The mapping errors are provided by C3S as part of the gridded
product whereas estimates for the other error sources are from Prandi et al. (2021) (available at
https://www.seanoe.org/data/00637/74862/). Details of how these uncertainties are taken into account in the data

fusion analysis are given in Section 3.

2.3. OM from satellite gravimetry

The OM data are based on measurements collected by the Gravity Recovery and Climate Experiment (GRACE).
Here, we use the global time-variable gravity mascon solution (RLO6v2.0) from the NASA Goddard Space Flight
Center (GSFC) (Loomis et al., 2019), available at https://earth.gsfc.nasa.gov/geo/data/grace-mascons. The data
span the period from April 2003 to December 2021 and are provided in the form of monthly mascons on an equal-
area 1° x 1° (at the equator) grid. Non-tidal ocean bottom pressure variations (GAD product) with their global ocean
mean removed have been restored and a GIA correction has been applied, ensuring that the resulting OM data are
comparable to the residual of altimetric SL and hydrography-derived TS+HS. The product supplies uncertainty
estimates at each mascon, accounting for both serially uncorrelated errors due to leakage and stochastic noise and

for leakage trends.

2.4. Surface heat flux

We use surface HF data from three products: 1) the Diagnosing Earth's Energy Pathways in the Climate system
(DEEP-C, version 5) project (https://researchdata.reading.ac.uk/347/) (Liu et al., 2015; Liu and Allan, 2022), which
provides monthly mean data on a 0.7°x0.7° global grid for the period; 2) the ERAS5 reanalysis
(https://cds.climate.copernicus.eu) (Hersbach et al., 2023), which provides monthly means on a 1/4° x 1/4° grid,;
and 3) the NCEP/NCAR reanalysis (https://psl.noaa.gov/data/reanalysis/reanalysis.shtml) (Kalnay, 1996), which
provides monthly mean data on a 2° x 2° global grid. DEEP-C is an observation-based and dedicated product that
has been developed specifically for a robust estimation of the surface HF and thus, in principle, it is preferable to
the reanalysis-based products, however, it only provides data up to November 2017. By including surface HF data
from reanalyses, we can obtain estimates of MHT for the period 2004-2020. The reanalysis-based HF across the

air-sea interface is calculated as the sum of radiative and turbulent fluxes from the reanalysis. None of the HF

8
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products provides uncertainty estimates, thus we derive a measure of uncertainty from the spread across the three
products as follows. In comparing the three HF products we note that the variability across the various products is
very similar, but differences in the time-mean HF can be larger. For this reason, we obtain uncertainty estimates
separately for the HF variability and the time-mean HF. The uncertainties associated with the HF variability are
estimated as the standard deviation (SD) of the HF anomalies (with respect to the time mean) over the three products
at each time step whereas those for the time-mean HF are computed as the SD of the time means across the three
products. Note that for the period beyond November 2017, uncertainties are based solely on data from ERAS and
NCEP.

2.5. Resolving the spatial resolution mismatch

Here we aim to combine three data sets that are incompatible in terms of spatial resolution. Both the hydrographic
data and the GRACE data are provided on relatively fine grids, but their effective spatial resolution is much lower
than what such grids imply. In particular, monthly GRACE data can be regarded as spatial averages over a ~300
km footprint (Tapley et al., 2019). The gridded hydrographic product is based on Argo profiles. Although such
profiles represent point-level measurements, they are sparsely collected over the ocean with an average spatial
separation of about 3 degrees (in any given month). This separation sets a practical limit to the smallest features
that can be resolved (on average) by the Argo data. Additionally, the Argo-derived gridded data incorporates some
degree of spatial smoothing due to the interpolation process, which is largely determined by the decorrelation
lengths scales used by the gridding methods. Such length scales are typically on the order of 300 km (Good et al.,
2013), except within a few degrees of the equator where they are significantly larger. The effective resolution of
the gridded altimetry data is higher than that of the GRACE and hydrographic data, although it varies with latitude.
The decorrelation length scales used in the mapping of the altimetry data, which we take as a rough measure of
spatial resolution, range from ~350 km in a low-latitude band (£15°N) to ~150 km poleward of this band (Pujol et
al., 2016). In considering ways of resolving the resolution mismatch problem, it is important to remember that,
here, we aim to assess heat budgets over large ocean regions and this only requires spatial averages of the relevant
variables over such regions (i.e., we do not need point-level estimates). In this context, the simplest solution to the
spatial support problem is to aggregate each of the three data sets into areal units (i.e., grid cells) of a size similar
to the resolution of the coarsest resolution data. In this way, the aggregated data will all have the same level of
spatial resolution and can then be combined using areal spatiotemporal modelling (Banerjee et al., 2014). In this
study, we adopt this approach.
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We set the size of the target areal units to 3° x 3° as this aligns with the decorrelation length scales used in the
mapping of the hydrographic data as well as with the resolution of the GRACE data. For all three data sets, we
aggregate the data by averaging the original grid cells over the target areal units through proportional area weighting

(i.e., weights are computed as the proportion of the target areal unit that lies within each source grid cell).

The uncertainties in the aggregated data are computed by propagating the source data uncertainties through the
spatial averaging process using standard error propagation formulae. In particular, the error variance of the
aggregated data at any given target cell is calculated as:

2 2
0 =YL, wio; +Z?=1Z?¢iWinPijUiUJ ()

where w; is the weight assigned to the i-th source grid cell in the aggregation process, g; is the standard error of

the source data at the i-th grid cell, and p;; is the error correlation between the i-th and j-th source grid cells. Note
that the correlations p;; are not known exactly and thus they need to be approximated somehow. Here, we assume
a spatial correlation function of the form p;; = e~ %/t where d;; is the geodesic distance between the centroids of

the i-th and j-th source grid cells, and [ denotes a decorrelation length scale. For the GRACE data, we assume that
errors are perfectly correlated in space. For the TS and HS data, we set =300 km at latitudes poleward of 5° and
[=600 km otherwise (based on the decorrelation length scales used in the mapping process). Finally, for the
altimetry data, we use different length scales depending on the type of error (see Section 2.2). For the interpolation
errors, we set [=150 km at latitudes poleward of 15° and =350 km otherwise (based on the length scales used in
the original gridding of the data). The high-frequency errors are assumed to be spatially uncorrelated. For the errors
associated with the wet tropospheric correction and the GIA adjustment, we set [=300 km. The drift errors and
inter-mission biases are assumed to be perfectly correlated in space (over the length scales on which the spatial

aggregation takes place).

2.6. Considerations on data temporal resolution

Although the data described above are available at monthly resolution, their effective temporal resolution is
somewhat lower due to the relatively low sampling rate of the observations on which the gridded products are
based. For example, most satellite altimeters have a repeat cycle that ranges from 10 days (e.g., Jason satellites) to
35 days (e.g., Envisat satellite), whereas GRACE has a repeat cycle of 30 days. Argo floats provide a vertical
profile once every 10 days. In practice, this means that the month-to-month variability in the gridded products
exhibits significant levels of noise. Such noise at high frequencies can be greatly amplified by the time derivatives
involved in the calculation of MHT (the amplification factor is proportional to frequency) and, in turn, can corrupt
10
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our estimates of MHT. To minimize this issue, we trade off some temporal resolution for a significant reduction in

noise by converting the monthly data to 3-month averages (i.e., to quarterly data: Jan-Feb-Mar, and so on).

The uncertainties associated with the quarterly data are calculated by propagating the uncertainties in the monthly
data using Eq. (5), where now the sub-indices i and j refer to the i-th and j-th months, respectively. For the
uncertainties in TS and HS as well as for the high-frequency errors in the GRACE and altimetry data (and the errors
in the wet tropospheric correction) we set w; = 1/3 and assume serially uncorrelated errors (p;; = 0). In contrast,
the leakage trends in GRACE are, by definition, perfectly correlated in time and thus such errors are not reduced
by the temporal averaging (their value remains the same). Similarly, for altimetry, the drift errors, inter-mission

biases and GIA errors are all modelled as a linear trend error and thus they are also perfectly correlated in time.

3. Bayesian hierarchical framework

Here, we develop a Bayesian hierarchical framework that integrates observations from altimetry, GRACE, and
hydrography together with surface HF data to estimate HTC from ocean heat budgets over a set of latitudinally-
bounded regions (see Fig.1). A schematic of the Bayesian model architecture is shown in Figure 2. The model is
composed of two distinct but interconnected parts: one that models the spatiotemporal evolution of the sea-level
components (TS, HS, and OM) based on the 3° x 3° areal units of quarterly (3-month-averaged) observations from
hydrography, altimetry and GRACE; and another part that determines non-seasonal quarterly HTC as the residual
of OHC tendency (derived using estimates of TS from the first component of the model) less surface HF over
selected regions bounded by latitude lines (Fig. 1). The heat budgets are evaluated over all regions simultaneously,
allowing for, but not enforcing, correlation in HTC between regions. It is important to note that the two parts
described above are components of the same Bayesian model, i.e., we compute a single posterior distribution from
which we derive expectation values (means and quantiles) for all the quantities of interest. We perform three
different fits based on the three surface HF products (DEEP-C, ERA5 and NCEP), which hereafter we refer to,
respectively, as BHM1, BHM2, BHM3. The solution BHM1 spans the period from the first quarter of 2004 to the
second quarter of 2017, whereas the other two solutions cover the period from the first quarter of 2004 to the last

quarter of December 2020.
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Figure 2. Schematic of the Bayesian hierarchical framework used to estimate MHT.

Our approach centers on the notion that the data, being observed with error, can be regarded as the sum of a true
latent spatiotemporal process plus observation error. For example, the GRACE data can be viewed as noisy
observations of the OM latent process, and similarly for all the other data sets. Here, the term process refers to a
stochastic process (i.e., a collection of random variables indexed by either time, space or both), whereas the term
latent process means that the process is not directly measured but inferred from noisy observations. The aim is then
to separate the various latent processes (TS, HS, OM, and HTC) from the observational noise through joint
statistical modelling of all the available data (i.e., hydrography, altimetry, GRACE and surface HF). By conducting
joint modelling and accounting for spatial dependencies, we allow for information exchange both between
observational data sets and across locations, improving the estimation of the true underlying process. The success
of this approach relies on the careful representation of uncertainty, not least because the model uses uncertainty to
decide which observations should have more influence. Furthermore, we need to consider not only uncertainty
associated with measurement noise, but also uncertainty arising from limited knowledge of the latent process as
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well as uncertainty in unknown parameters of the BHM such as decorrelation length scales and error variances.
This problem can be conveniently formulated within a Bayesian hierarchical framework.

Here, we develop a BHM with three layers (each layer takes the form of a probability model): 1) a data model that
describes the distribution of the observations (SL, TS, HS, OM and HF) conditional on the latent processes; 2) a
process model that describes the spatiotemporal evolution of the latent processes conditional on a set of parameters;
and 3) a parameter model that describes the uncertainty in the model parameters and encodes any prior information
that we have about the data and the processes. In our BHM, each component of sea level (i.e., TS, HS and OM) is
modelled as the sum of three contributions, namely seasonal changes, variability, and a linear trend. The non-
seasonal HTC is modelled as the combination of variability, a linear trend and an intercept. Next, we describe each

layer of the BHM, starting with the data layer.

3.1. Observation layer.

LetB ={B;|i=1,...,N}denote the set of 3°x3° cells on which the observations have been aggregated, and
zp, +(B;) denote an observation on the i-th cell at time step t, for p € P where P = {SL, TS, HS, OM}. The data layer

of the BHM for the sea-level observations can then be written as:

2y (BY) = ype(B)) + a,(B) + by (Bt (s, om(P) + by (B)E1iomy () + €y (B), i=1,..,N t=1,..,T
(6)

where y, ;(B;) denote the true latent process of interest. The term a,(B;) represents data offsets, modelled as
independent and identically distributed (i.i.d.) normal random variables with variance of 1 m?, ap(Bi)in(O,l).
Such offsets are introduced to cater for the fact that the sea-level height data are referenced to different vertical

datums. The variables b,(B;) denote data error trends, modelled as i.i.d. normal random variables,
b, (Bi)ii'«iN(O, yﬁ (B;)). These include orbit errors, inter-mission biases and GIA uncertainties in the altimetry data,
and leakage trends in GRACE. The factor 14(x) is an indicator function such that 1,(x) =1 if x € A, and
1,(x) = 0 otherwise. The variables by, (B;) are introduced to account for a gradual increase in instrumental noise
during the final years of the GRACE mission and are modelled in the process layer. The variable £ is defined such
that £ = t if t corresponds to the years between (and including) 2012 and 2017, and £ = 0 otherwise. Finally,
ep,:(B;) are assumed to be serially and spatially uncorrelated observation errors, ep,t(Bi)iTidN (o, Gﬁ,t(Bi))- The

variances y,? (B;) and Uﬁ,t(Bi) are specified based on the data uncertainties calculated as described in Section 2.
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Next, we define the data model for the surface HF data. Let R = {Rj | j =1,..., M} denote the set of regions over
which the heat budgets are evaluated, and Qt(Rj) be the non-seasonal surface HF into the ocean at time t spatially
averaged over R;. We express Q;(R;) as the sum of its time-mean value, (Q;(R;)), plus a fluctuating part, Q;(R;),

as this allows us to model uncertainty in both components explicitly. With this, the observation layer for the HF

data is written as a heat budget:
Qé(Rj) = Hé(Rj) - Ut’(Rj) + vt(Rj): j=1..,M )

where Ht(R]-) is the non-seasonal OHC tendency spatially averaged over R;, U.(R;) is the HTC through the lateral

boundaries of R; , and v.(R;) and q(Rj) are serially and spatially uncorrelated observation errors,

ve(R) N0, 12(R)) and q(R)™'N(0, 52(R;)). The SDs n(R;) and 8(R;) are set equal to the SD of the HF
over the three HF products (DEEP-C, ERA5 and NCEP) for the anomalies (at each time step) and the time mean,

respectively. The prime ' denotes deviation with respect to the time mean.

3.2. Process layer.

Here, we describe the process layer of the BHM. The degree to which the noise increases during the final years of

the GRACE mission (see Equation 6) appears to be similar for cells that are close to one another. To capture this

spatial dependency, the variables b, (B;) are assumed to follow a spatial conditional autoregressive (CAR)
process (Cressie and Wikle, 2011):

bom(B;) ~MVN(0, (Iy — apK) ™7} D) ©)
where MV N denotes a multivariate normal distribution, I is the identity matrix of size N, «,, is a parameter that
controls the degree of spatial autocorrelation (to be estimated), K is the adjacency matrix (k; = 0, k;; = 1if B;
and B; are neighbors, and k;; = 0 otherwise), 7;, is a SD parameter (to be estimated), and D = diag(1/n;) is an
Nx N diagonal matrix with n; equal to the number of neighbors of the i-th grid cell. Two cells are considered to be
neighbors if the distance between their centroids is no larger than two times the size of the cells (i.e., 6 degrees).

CAR models are classes of Markov random fields commonly used to describe spatial autocorrelation in areally-

aggregated data.

Seasonal changes in the sea-level components are modelled as:
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Xp525(By) = a1,,(B;) cos(wt) + a, ,(B;) sin(wt) p € P\{SL} (10)

where w is the angular velocity of the annual cycle, and ay ,(B;), for k = 1,2, are CAR processes:

-1
arp(B)~MVN(O, (Iy — ag,K) "12,D) (11)

The non-seasonal variability in TS, HS and OM is modelled as spatial fields that evolve through time according to
a first-order autoregressive moving average (ARMA) process. Here, we note that the TS and HS components of
sea level tend to covary inversely. To capture this spatiotemporal interaction between TS and HS, we use the
method of coregionalization (Gelfand et al., 2004), which assumes that the interaction is local. With this, the model

for the non-seasonal variability can be written as:
Xy (B)) = ppXpety(By) + 6pmy 1 (B) + my, (B) — Yymps (B)1usy(p)  p € P\{SL} (12)
where p,, and 6,,, for p € P\{SL}, are spatially constant coefficients that control, respectively, the degree of

temporal autocorrelation and past-noise dependence, i is a positive parameter (to be estimated) that determines

the strength of the interaction between the TS and HS fields, and m,.(B;) are CAR processes,
-1
my ¢ (Bi)~MVN(O0, (Iy — ampK) “t2,,D).

The linear trends in the latent sea-level processes are modelled as spatial fields, where again we capture the

interaction between the TS and HS fields through coregionalization:
x5t (B) = (9,(B) — dgrsBLusy@))t.  p € P\(SL) (13)

where ¢ is an interaction parameter (to be estimated), and g, (B;) are CAR processes, g, (B)~MVN (ig , (IN —

ag_pK)_lrj,pD), for p € P\{SL}. The mean of the CAR process, u ,, is setto 0 for p € {T'S, HS} and to 2 mm yr-
! for p € {OM} based on the spatially averaged trends from the observational data (computed using ordinary least

squares).
With all the contributions now defined, the true latent process for each sea-level component is given by:
Ype(B) = xp25(By) + %y (B) + x5 (B)),  p € P\{SL} (14)
Ys1,t(Bi) = Yrs,t(Bi) + Vs, (Bi) + You,(B;) (15)

The non-seasonal OHC tendency spatially averaged over R; is computed as follows. Let y$§§(Rj) be the

deseasonalized TS at time ¢ spatially averaged over R;, computed as:
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N . .(yVar p. Trend /.
y?;jf(R]) _ Yi=1 WLJ(XT;;I(B:/?:—'XTSJ (Bl)), j= 1,..M (16)
i=1Wij

where the weights w;; are computed as the proportion of the region R; area that lies within the grid cell B;. The
non-seasonal OHC tendency is then calculated using central differences as:

pOC(RJ') VTQSe.gﬂ(Rj)_ y?;i—l(Rj)
a(Rj) 2 '

Hi(R;) = j=1,..,M (17)

where p, is a reference seawater density, c(R;) is the time-mean heat capacity of seawater spatially averaged over
R;, and a(R;) is the time-mean coefficient of thermal expansion spatially averaged over R; and vertically averaged
over the top 1500 m of the ocean (averaging the coefficient of thermal expansion over different water depths has
almost no effect on the phase of the estimated HTC variability and only a small effect on its amplitude).

Finally, the HTC through the lateral boundaries of R;, U.(R;), is modelled as the sum of three contributions, namely
variability, a linear trend, and an intercept. The variability in U, (R;) is allowed to be correlated across regions, and

thus we modeled it as a spatial CAR process that evolves through time according to a first-order ARMA process:
uyar(Rj) = PUUY—a{(Rj) + Oyfi-1(R)) + fe(R)) (18)
where p;; and 8 are spatially constant coefficients that control, respectively, the degree of autocorrelation and
past-noise dependence, and f;(R;) is a spatial CAR process f;(R;)~MVN (0, (I, — ayL) 1tZDy). Here, L is the
Mx M adjacency matrix, and Dy = diag(1/n;) is an Mx M diagonal matrix with n; equal to the number of

neighbors of the j-th region. In this case, two regions are considered to be neighbors if they share a common border.
Both the linear trend and the intercept are modelled as i.i.d. normal random variables with SD of 1.3 W m? yr* and
127 W m?2, uTrend(R) "N (0, 1.32) and u™(R,) N (0, 1272).

With this, the HTC is calculated as:

Ue(R;) = u® (R;) + tu™(R;) + u™(R)) . (19)

3.3. Parameter layer

The BHM is completed by defining the parameter layer. The prior distributions ascribed to the hyperparameter of
the BHM are summarized in Table 1. Here, we provide justification for the informative the priors. First, the priors
assigned to the ARMA parameters (p, and 6,) ensure that the ARMA processes are stationary and invertible by

enforcing the following conditions: 0 < p, <1 and |6,| < 1. The constraint applied to the autocorrelation
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parameters of the CAR processes, a, < AL, is necessary to ensure that the covariance matrix of the CAR
processes is positive definite. The choice of the location parameter for the truncated normal distributions assigned
to the SDs of the CAR trend processes (i.e., 74 rs, Tgus and 74 o) is based on the SD of the trend fields derived
from the observations. Finally, the interaction parameters (i and ¢) are assumed to be positive since the TS and

HS components tend to be anticorrelated, with values likely ranging from 0 to 1.
Table 1. Prior distributions ascribed to the hyperparameters of the BHM. The constant A,,,, IS the maximum
eigenvalue of the corresponding adjacency matrix (K for a,;,, @mp, @4, and ay, and L for ay;). The notation

half-2N denotes a half normal distribution whereas trunc-N(,)[a,b] represents a truncated normal distribution with

support in the interval [a,b].

3.4. Inference

Parameter Units Description Prior distribution
Pp PE {TS,HS,0M, U} - ARMA autocorrelation Uniform(0,1)
Qp p € {TS,HS,O0M, U} - ARMA past noise Uniform(—1,1)
Xa,p) Xm,p) Xg,p» Ab) Xy CAR autocorrelation Uniform(0,A5L.
p € {TS,HS, OM}
Tapr Tmp m CAR standard deviation half-2N(0,1)
p € {TS,HS, OM}
Tp mm yr! CAR standard deviation half-_'N(o,102)
TyTS mmyr! CAR standard deviation  trunc-N(3.5,1)[0, o]
Tg HS mmyr! CAR standard deviation  trunc-N(2.0,0.3%)[0, o]
TgoMm mmyr! CAR standard deviation  trunc-N(1.3,0.3%)[0, o]
Ty W m?2 CAR standard deviation half—.’N(O,1272)
Y, P - Interaction TS-HS half-N(0,1)

Inference in the BHM is accomplished by numerically sampling from the posterior distribution of the processes
and parameters given the observational data using the No-U-Turn Sampler (NUTS) as implemented by the
Numpyro probabilistic programming language (Phan et al., 2019). NUTS is a Markov chain Monte Carlo (MCMC)

method that uses Hamiltonian dynamics to enable rapid exploration of the posterior distribution. We run the
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sampler with four chains of 1000 iterations each (warm-up=1000) for a total of 4000 post-warm-up draws. Such

draws represent samples from the posterior distribution.

4. BHM evaluation
4.1. MCMC diagnostics

We begin the evaluation of the model by assessing how accurately the MCMC samples characterize the posterior
distribution. To this aim, we use a number of MCMC diagnostics that are designed to diagnose problems with the
sampler and assess convergence and mixing. In this context, convergence means that the Markov chains have
reached a stationary distribution that coincides with the true posterior distribution, whereas mixing refers to the
number of iterations required for a Markov chain to approximate the posterior distribution adequately. While there
are no definitive tests of convergence, we can use various diagnostics to determine whether Markov chains appear
to have converged. One of such diagnostics is the potential scale reduction statistic (Gelman and Rubin, 1992), R,
which checks whether Markov chains initialized from different values have the same distribution (a necessary,
although insufficient, condition for convergence). Mathematically, R compares the sample variances both within
and between Markov chains. When all the Markov chains have converged to the same distribution, values of R
should be close to 1 for all model parameters. While there is no universally accepted cut-off point for convergence
based on R, values of R >1.2 are typically considered to be suggestive of non-convergence. In addition to
convergence, evaluating the mixing of the Markov chains is also important as this can be poor in complex models
due to high autocorrelation of the MCMC samples. The higher the autocorrelation the larger the MCMC standard
error (given a fixed number of iterations), and thus the larger the error of the estimates derived from the posterior
samples. As a measure of mixing and autocorrelation, we use estimates of the effective sample size, n.g, for each
hyperparameter (Gelman et al., 2014). In general, a value of n.¢ per iteration <0.001 is indicative of poorly mixing

chains and suggestive of possible biased estimates.

We find R to be <1.2 for all hyperparameters in the BHM, suggesting that the Markov chains have converged to
the equilibrium distribution and are providing a good approximation to the posterior distribution. Additionally, the
negr Per iteration is >0.001 for all hyperparameters with an average value ranging from 0.21 to 0.31 (depending on

the BHM fit), indicating low autocorrelation and good mixing.

We use additional diagnostic tools, specific to Hamiltonian Monte Carlo, that offer information about the ability of
the NUTS sampler to explore the posterior distribution. These tools include divergent transitions and tree-depth
saturation. The presence of divergences would indicate that the sampler has run into regions of challenging
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posterior geometry that it is unable to explore well, whereas the appearance of tree-depth saturations would indicate
that the sampler is terminating prematurely to avoid excessively long execution time thus leaving regions of the
posterior distribution unexplored. We confirm that none of the iterations in the three model fits (BHM1, BHM2
and BHM3) showed any divergent transitions or tree-depth saturations, giving us additional confidence in the

reliability of our Bayesian solutions.

4.2. Goodness of fit

Here, we evaluate the performance of our Bayesian model by examining its ability to accurately fit the observational
data. We begin by examining the residuals from the observation model (Equation 6), focusing on the SL process
as this integrates all the sea-level components (i.e., zs; ; — ysi+ — s, — bsy t). The observation model assumes
that the residuals are normally distributed, and thus gross violations of this assumption would signal the inadequacy
of the model to describe the underlying structure of the data. It is, therefore, important to confirm the
appropriateness of the normality assumption. Here, we do this by testing the null hypothesis that the residuals
conform to a normal distribution using the Anderson-Darling test (Anderson & Darling, 1954). We apply the test
separately to the time series of residuals at each grid cell and for each iteration. The test fails to reject the null
hypothesis (5% significance level) in about 95% of the cases (4000 iterations x 641 cells) for all three BHM fits,
confirming the validity of the normality assumption. We also verify that there are no systematic departures between
the Bayesian solutions and the observations. In particular, we find that the time-mean of the residuals across all the
grid cells are distributed symmetrically around zero, with a mean value <0.4 mm and a SD of about 4 mm.

Both the MCMC diagnostics and the residual analysis presented above indicate a good fit of the Bayesian model
to the observational data. Despite this, it is still important to check that the posterior inferences from the model
look plausible when compared to the observational data. We do this by plotting estimates of SL, TS, HS and OM
against observational time series at a randomly selected grid cell (Fig. 3). We show results only for the solution
based on the surface HF from DEEP-C (i.e., BHM1) but estimates from the other three Bayesian solutions show a
similar performance. All the sea-level components show considerable inter-annual variability, although such
variability is significantly larger in the SL and the TS with peak-to-peak fluctuations that can reach more than 20
cm as compared to 8 cm for the HS and 2 cm for the OM. While the inter-annual variability is similar between the
observations and the Bayesian solutions, as we would expect, there are also significant differences between the
two, especially for the TS and HS. These differences reflect the relatively large uncertainties associated with the
TS and HS observations and also demonstrate a crucial point: the ability of the BHM to constrain the TS and HS

estimates based on information from the SL and OM data. This ability leads to more accurate estimates of TS and
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HS, in turn, allowing us to obtain more reliable estimates of MHT and other quantities of interest that depend on
TS and HS.

For completeness, we have also plotted the linear trend estimates derived from the BHM on top of the time series
(Fig. 3). In assessing the trends, it is important to note that the Bayesian trends are not directly comparable to least
squares trends calculated from individual observed time series. Bayesian trends aim to capture the true underlying
trend, free from the influence of AR1 variability and noise, whereas least squares trends will be affected by these
factors. In practice, this means that the Bayesian trends will not necessarily be entirely aligned with what visually
appears to be the tendency of the time series, although in general we would expect some degree of alignment,
especially if the trend is large relative to the variability. In the example of the figure, the trends do agree to a large
extent with the long-term tendency displayed by the time series, including in the OM time series for which the
trend is the dominant signal.

(a) Sea level (b) Thermosteric
12

Level (cm)

(c) Halosteric (d) Ocean Mass

—Observed: z, - Xgeas
34 3 — Bayes total: y, +a, - xSeas
| — Bayes trend: KT 45,

Level (cm)

2004 2008 2012 2016 2004 2008 2012 2016
Year Year

Figure 3. Quarterly (3-month-averaged) time series of (a) sea level, (b) thermosteric, (c) halosteric and (d) ocean
mass as derived from BHML1 at a randomly selected grid cell (red) together with the corresponding observed time
series (black). Bayesian estimates of the linear trend at the same grid cell (blue) are also shown for the SL and its
components. The shading around the red and blue lines represents the 5-95% credible interval.
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5. Atlantic meridional heat transport
5.1. Calculation of the MHT

In this section, we describe how estimates of MHT over the Atlantic Ocean are derived from our Bayesian estimates
of HTC. The BHM does not provide MHT directly as an output, but this can be calculated by meridionally
integrating the HTCs. The integration can be started from any of the twelve latitude lines (see Fig. 1), but here we
choose (for reasons that will become obvious later) to start from the northernmost latitude (i.e., 65°N). In this case,
the northward heat transport across the i-th latitudinal section at time t, MHT; ; (using the same labeling as shown

in Fig. 1), can be calculated as:
MHT;, = MHT;; + X2} HTC; . , i=1,..,M+1 (20)

where MHT; , is the northward heat transport at 65°N and HTC; , is the heat transport convergence in region R; at
timet (i.e., Ut(Rj)). Clearly, to evaluate Eq. (20) at any latitude line we need an estimate of MHT; ;, but such an
estimate is not available. Let’s now suppose that we set MHT; . = 0 and then evaluate Eq. (20). This will produce
estimates of MHT that will be accurate at any latitude where the true transport, MHT;'/"¢, is large relative to the
true transport at 65°N, i.e. where the following condition is met: MHTL-T{“‘e > MHTE{“‘*. While the validity of this

approximation cannot be tested at all latitudes due to the lack of MHT estimates, it can be assessed at 26°N by
comparing estimates of MHT from the RAPID array (at 26°N) with estimates from the OSNAP array (at 50°N-
60°N). Such comparison shows that the SD of the MHT time series (3-month means; overlapping period) is over
four times larger at RAPID than at OSNAP, whereas the time-mean MHT is more comparable in magnitude with
values of 1.19 PW (RAPID) and 0.51 PW (OSNAP). This indicates that ignoring the variability of MHT; in Eq.
(20) will provide a very good approximation to the MHT variability at 26°N, assuming that the MHT variability at
65°N is similar to (or smaller than) that at the latitude of OSNAP. Ignoring the time-mean value of MHT, will,
however, incur a larger error. Considering this, we approximate Eq. (20) as follows (we drop the temporal subscript
t to simplify notation):

MHT; = (MHTOSNP) — (HTC,) + X' HTC;,  i=2,..,M +1 (21)

where the angle brackets denote the time mean and (MHT2SNAP) js the time-mean MHT from the OSNAP array
over the period 2014-2018 (i.e., it is set equal to 0.506 PW). Hence, in Eg. (21) we are essentially setting MHT; =

0 and the time-mean value of MHT at 60°N equal to (MHT?SNA4P) In making this approximation, we have implicitly
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assumed that the time-mean MHT at 60°N is constant over the period of our analysis, which appears to be a
reasonable assumption based on the lack of a significant trend in the OSNAP MHT time series.

At this point, one might wonder why not start the integration of the HTCs at 26°N instead of 65°N and then just use
the MHT from the RAPID array to fix the constant of integration, as this would circumvent the need to make any
approximations. This, of course, is straightforward to do but it raises its own issues. First, this would make our
estimates dependent on the RAPID-derived MHT and, thus, would leave us with almost no observation-based
estimates with which to validate our results. Second, the magnitude of the MHT variability at 26°N appears to be
significantly larger than that at middle and high latitudes of the North Atlantic, and thus any discrepancies between
our HTCs and those that would be consistent with the MHT from RAPID would manifest as large errors at higher
latitudes where the MHT variability is relatively small. Of course, the approximation used in Eq. (21) will also
introduce errors at latitudes where the MHT variability is small, but the advantage in this case is that our estimates
of MHT are entirely independent from the RAPID-derived MHT.

5.2. MHT at 26°N

Here, we compare our Bayesian estimates of MHT at 26° N calculated using Eq. (21) with the MHT from the
RAPID array. The comparison is done for two different periods: 2004-2017 for BHM1, and 2004-2020 for BHM2
and BHM3. In the following, any estimates derived from the BHM solutions will be summarized by the posterior

mean and the 5-95% credible interval (CI), where the Cls will be denoted by square brackets.

Before proceeding with the comparison, we note a recent study by Volkov et al. (2024) reporting on a spurious
drift in the submarine cable measurements of the Florida Current that are used in the calculation of the RAPID-
derived AMOC and MHT. In this study, they show that, after correcting for this spurious drift, the negative trend
that is detectable in the uncorrected RAPID AMOC time series becomes barely statistically significant. This drift
is also certain to affect the RAPID-derived MHT time series, but no correction for the MHT is publicly available
at the time of writing this article. In view of this, we choose to remove a linear trend from the time series of MHT
before the comparison to ensure that the comparison metrics reflect the true degree of concordance between the
Bayesian and the RAPID estimates. That said and given the current debate on whether or not the AMOC is
weakening, it is worth mentioning that of the three Bayesian estimates of MHT at 26° N, only BHM3 shows a
statistically significant trend, and even then only marginally. More precisely, the MHT trends derived from BHM1,
BHM2, BHM3 for the overlapping period 2004-2017 are, respectively, 0.06 PW decade™ [-0.12,0.25], 0.09 PW
decade™ [-0.09,0.26], and 0.21 PW decade™ [0.02,0.39]. Given the strong correlation between the AMOC and the
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MHT at 26°N (Johns et al., 2023), the lack of a statistically significant trend in two of the three Bayesian solutions
appears to support the findings of Volkov et al. (2024).

Moving now to the comparison, we begin by showing the quarterly MHT time series as derived from the BHM
together with the MHT from RAPID (Fig. 4a-c). Note that these time series represent 3-month-averaged values
without any smoothing or scaling applied to them (i.e., they are the direct solutions from the BHM, except for the
removal of a linear trend). Visually, it is already obvious that the variability in the MHT from RAPID is very well
captured by the three Bayesian solutions, in terms of both the phase and the magnitude of the variability. This
includes the prominent drop in MHT around 2010, the magnitude and timing of which are both captured with
remarkable precision by the Bayesian solutions. More quantitatively, the correlation between the RAPID and
Bayesian time series for the common period 2004-2017 is very significant with values of 0.77, 0.72 and 0.74 for
BHM1, BHM2 and BHM3 respectively. For the period 2004-2020, the correlation is 0.63 for both BHM2 and
BHM3. The lower correlation observed during the longer period of 2004-2020 is primarily due to a discrepancy in
2020. During this year, the Bayesian estimates indicate a decline in MHT, while the RAPID time series shows a
pronounced spike. This discrepancy is the most significant inconsistency between the Bayesian and RAPID time
series throughout the entire period. The SD of the MHT time series, which provides a measure of the magnitude of
the variability, is also completely consistent between the Bayesian solutions and the MHT from RAPID, with values
of (common period 2004-2017) 0.19+0.02 PW (RAPID), 0.19 PW [0.16,022] (BHM1), 0.18 PW [0.15,0.21]
(BHM2) and 0.19 PW [0.16,0.22] (BHM3) (the uncertainty in the RAPID SD represents the frequentist 90%

confidence interval).
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Figure 4. Quarterly (3-month-averaged) time series of MHT at 26° N (red line) as derived from (a) BHM1, (b)
BHM2, and (c) BHM3 together with the RAPID-derived MHT (black line). The shading around the Bayesian time
series represents the 5-95% CI. (d) Time-mean MHT from solutions BHM1, BHM2 and BHM3, summarized by
the posterior mean (central mark), interquartile range (box) and 5-95% CI (whiskers). The Cls associated with the
Bayesian estimates of the time-mean MHT reflect both statistical uncertainty due to the variability of the MHT
time series as well as uncertainty from all sources considered in the BHM. For comparison, box and whiskers for
the time-mean MHT from RAPID are also shown (in this case the quantiles have been computed based on the

uncertainty provided by Johns et al. (2023), assuming a normal distribution).

Focusing now on the time-mean MHT, we can already sense from the comparison of the time series (Fig. 4a-c) that
BHM1 and BHM3 match the time-mean MHT from RAPID very well, whereas BHM2 displays a slight, almost
imperceptible, downward offset. This visual intuition is confirmed by calculating the time-mean value of the time
series and its uncertainty for the common period 2004-2017 (Fig. 4d). The time-mean MHT from RAPID is
1.18+0.20 PW (90% confidence interval), whereas for BHM1, BHM2 and BHM3 we obtain values of 1.17 PW
[1.04,1.30], 1.05 PW [0.93,1.18] and 1.16 PW [1.03,1.29]. In short, the time-mean MHT from BHM1 and BHM3
is in perfect agreement with that from RAPID, while that from BHMZ2 is slightly lower but still consistent with
RAPID when considering the uncertainty.
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To complete our comparison, we evaluate the agreement between the Bayesian solutions and the RAPID-derived
MHT at lower frequencies by applying a 5-quarter running mean to the MHT time series (Fig. 5). For clarity, and
since we have already discussed the time-mean MHT, we now present the anomalies with respect to the time mean.
We find that, at such lower frequencies, the agreement with RAPID is also remarkably good, with correlations for
the common period 2004-2017 of 0.93, 0.81 and 0.86 for BHM1, BHM2 and BHM3, respectively. For the longer
period of 2004-2020, the correlation for BHM2 and BHM3 is slightly lower with a value of 0.76. The best
agreement with the MHT from RAPID is observed again for BHM1, which shows almost a perfect match (Fig. 5a),
capturing both the timing and magnitude of nearly all the prominent features in the RAPID-derived time series,
including the big drop around 2010 and the recovery afterwards. One of the most significant discrepancies between
the Bayesian and RAPID time series occurs during the period 2005-2007, when the latter consistently exhibits
higher MHT values. However, the elevated MHT values in the RAPID time series around 2006 are expected to
decrease following the application of the drift correction proposed by Volkov et al. (2024). This adjustment would

likely improve the agreement between the RAPID estimates and the Bayesian solutions.
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Figure 5. Same as Figs. 4a-c but with a 5-quarter running mean applied to the time series and the time-mean MHT

removed.
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5.3. MHT over the Atlantic Ocean

Although the excellent agreement of the Bayesian estimates with the MHT from RAPID at 26° N does not guarantee
a similar performance at other latitudes, it does give us confidence that the estimates are robust and likely to reflect
true changes. In this section we show our estimates of MHT across eleven latitude lines over the Atlantic (we do
not include 65° N as our estimates are set to zero at this latitude), both in their quarterly (3-month-averaged)
resolution (Fig. 6a) and after applying a 5-quarter running mean (Fig. 6b). Note that, unlike for the comparison
with the MHT from RAPID, here we do not remove a linear trend from any of the time series. While long records
of MHT from direct ocean observations are restricted to only RAPID at 26° N, several earlier studies have produced
estimates of MHT with good spatial coverage indirectly as the residual from energy budgets. Here, for comparison
and as an additional check on our approach, we plot estimates from one of such studies (Trenberth et al., 2019) on
top of ours, although this comparison is only possible for low-pass filtered time series because estimates from
Trenberth et al. (2019) are only available as 12-month running means.

Looking at the quarterly MHT time series (Fig. 6a), we note several interesting features. First, MHT estimates from
the three Bayesian solutions are very similar to one another at all latitudes, both in terms of phase and magnitude
of the variability. Indeed, the correlation over the overlapping period 2004-2017 for all pairs of (detrended) time
series from BHM1, BHM2 and BHM3 is > 0.9 in most cases, whereas differences in the SD of the time series are
always smaller than 25% of the SD value. In comparing the three solutions, we also note that BHM3 shows slightly
larger MHT values than BHM2 in the last years at most latitudes. This is primarily due to a small difference in the
long-term trend between the two solutions rather than differences in variability. Comparing now the MHT time
series from different latitudes, we note that the amplitude of the MHT fluctuations tends to increase gradually from
north to south. For example, taking the SD of the time series as a measure of variability, we find that SD values for
BHM1 range from 0.02 PW [0.02,0.03] at 60° N to a maximum value of 0.29 PW [0.24,0.34] at 35° S. Similar SD
values are found for BHM2 and BHM3. Peak-to-peak fluctuations can be as large as 0.7 PW at 26° N and 1.5 PW
at both 35° S and 25° S. The MHT fluctuations show a strong latitudinal coherence within two bands of latitudes,
namely between 35° N and 16° N and from 5° N to 35° S. Such bands are not entirely decoupled from one another,
but the MHT coherence within a band is much stronger than between bands. In particular, the event of 2010, which
is so prominent in the MHT time series at 26° N, is also clearly visible at 16° N but much less so at 5° N. The lack
of coherence south of 16°N during this event can be attributed to its main underlying cause — a southward shift of
the North Atlantic subtropical gyre driven by a southward displacement of the mid-latitude westerlies (Evans et al.,
2017) — the effects of which were largely confined to the mid-latitude regions with limited influence further south.
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Figure 6. (a) Quarterly (3-month-averaged) time series of MHT anomalies across the latitudinal sections denoted
on the vertical axis as estimated by BHM1 (red), BHM2 (blue) and BHM3 (yellow). (b) Same as panel (a) but with
650 a5-quarter running mean applied to the time series. For comparison, estimates of MHT from Trenberth et al. (2019)

across the same sections are also shown in black.

Turning now our attention to the low-pass filtered time series (Fig. 6b), we note that again the three Bayesian
solutions are in good agreement. The tendency of BHM3 to show higher MHT values in the last years compared
to BHMZ2 is more noticeable in the smoothed time series since the short-term variability has been filtered out, but

655 it is still mostly due to differences in the long-term trend between the two solutions. Just like for the quarterly
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values, the magnitude of the fluctuations increases southward, although differences in magnitude across latitudes
are smaller. The bands of latitudinal coherence are essentially the same as noted for the quarterly values. Overall,
the Bayesian estimates are in good agreement with the time series of Trenberth et al., (2019) over the period 2004-
2016, with correlation values of (maximum across BHM1, BHM2 and BHM3; detrended time series) 0.49 (60° N),
0.69 (55° N), 0.67 (45° N), 0.79 (35° N), 0.81 (26° N), 0.76 (16° N), 0.71 (5° N), 0.71 (5° S), 0.72 (11° S), and 0.63
(25° S). There are, however, noticeable differences in the strength of the variability between the two estimates at
some latitudes. In particular, the size of the fluctuations is significantly larger in our estimates than in those of
Trenberth et al. (2019) at all latitudes south of the equator.

Finally, it is also interesting to plot the time-mean MHT from the three Bayesian solutions across all the latitudinal
sections of the Atlantic (Fig. 7). For comparison, observation-based estimates from the RAPID array (at 26° N),
Trenberth et al. (2019) as denoted by T19, and Ganachaud & Wunsch (2003) as denoted by GWO03 are also shown.
The time-mean MHT is computed over the period 2004-2017 for the three Bayesian solutions and RAPID, 2004-
2016 for T19, and 1990-1996 for GWO03. Focusing first on the Bayesian estimates, we note that the time-mean
MHT is positive, and thus northward, at all latitudes, achieving its maximum value between 26° N and 16° N
depending on the solution. Overall, the latitudinal structure of the time-mean MHT is very similar across the three
Bayesian solutions but there can be differences in the actual values (i.e., the posterior means). More precisely, the
three solutions are in very good agreement in the 60° N—26° N latitude band, but south of 26° N the spread becomes
wider, with BHM3 showing considerably higher positive values than BHM1 and BHM2. The largest difference
between BHM3 and the other two Bayesian solutions is found at 35° S where BHM3 gives a value of 0.72 PW
[0.47,0.97] compared to 0.36 PW [0.13,0.59] and 0.20 PW [-0.03,0.44] for BHM1 and BHM2, respectively. Note
that the Bayesian Cls tend to become wider as we move southwards. This reflects both increased MHT variability
as well as larger differences between surface HF products (recall that the uncertainty in the surface HF data has
been calculated as the spread over the three HF products).

Taking BHM1 as our best solution — given its reliance on an observation-based HF product and its superior
agreement with RAPID — we find that the time-mean MHT has a value of 0.51 PW [0.50,0.52] at 60° N (recall this
value is set to match the time-mean MHT from the OSNAP array), which gradually increases southward reaching
a maximum value of 1.17 PW [1.04,1.30] at 26° N, before decreasing again to a minimum value of 0.36 PW
[0.13,0.59] at 35° S. This latitudinal structure of the time-mean MHT aligns well with the other observation-based
estimates (RAPID, T19 and GW03), although noticeable differences exist in the values. Among all the estimates
at 26° N, BHM1 shows the closest agreement with RAPID, while GWO03 displays higher values (1.27 PW) and T19
lower values (1.05 PW). Overall, the Bayesian estimates align more closely with T19 than with GWO03. In fact,
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GWO03 consistently shows higher values than all the other estimates across most latitude, including RAPID,
although this might be because the GWO03 estimates refer to a different period.
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690 Figure 7. Time-mean MHT derived from BHML1 (red), BHM2 (blue) and BHM3 (yellow) along with the associated
5-95% Cls (whiskers) at multiple latitudes of the Atlantic Ocean. The Cls reflect both statistical uncertainty due to
the variability of the MHT time series as well as uncertainty from all sources considered in the BHM. Observation-
based estimates from the RAPID array, Trenberth et al. (2019) as denoted by T19, and Ganachaud & Wunsch
(2003) as denoted by GWO03 are also shown. The Bayesian solutions have been slightly shifted in latitude for better

695 visualisation, but they all correspond to the same latitude. The confidence intervals associated with the RAPID
(90% interval) and GWO03 (1-sigma interval) estimates are derived from the values provided in the corresponding
studies.

6. Data availability

The Bayesian estimates of MHT and HTC are available at Zenodo via https://doi.org/10.5281/zen0d0.14931921. (At the

700 moment, access to files is restricted but will be made open once the paper is accepted for publication. In the meantime, files
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can be accessed via the link:
https://zenodo.org/records/14931921?token=eyJhbGciOiJlUzUxMiJ9.eyJpZCI61jYOMGEYyOWVhLWQwWYjYINDIXNi1lhN
GIOLTELYmUwYjZmMjgwZClsImRhdGEiOnt9LCJyYW5kb20i0iJnMzdmMzA5SNTgzOGQXNDhIM2QxZDZIMzcxODI
3YjFkNiJ9.qIn7PtJ9B9wBa-a3jlU3py-6IrCnEKRp600TjJg5mc3uGRL8chabbAtOCey X XZUurgRV7sH8HsfwugDR71Su9g)

7. Conclusions

Here, we have generated observation-based probabilistic estimates of MHT for the period 2004-2020 at 3-month-
mean resolution across 12 latitudinal sections of the Atlantic Ocean between 65° N and 35° S. The MHT has been
calculated based on estimates of HTC which, in turn, have been inferred as a residual from the difference between
OHC tendency and surface HF through joint spatiotemporal modelling of observations from hydrography, satellite
altimetry and satellite gravimetry. We have produced three different Bayesian solutions based on three different
surface HF products, namely DEEP-C, ERA5 and NCEP.

Our estimates of MHT agree remarkably well with estimates based on direct ocean observations from the RAPID
array at 26° N, capturing both the magnitude and phase of the MHT variability in the RAPID time series with high
fidelity. The time-mean MHT at 26° N is also very well captured by the three Bayesian solutions. The solution
based on DEEP-C (BHM1) shows the closest agreement to RAPID-derived MHT, with a correlation of 0.77 for
the quarterly time series and 0.93 for low-pass filtered (5-quarter running mean) time series. Such correlation (0.93)
is noticeably higher than the correlations reported by previous studies for annual or 12-month low-pass filtered
data, such as 0.54 by Meyssignac et al. (2024) for the period 2005-2018, 0.66 by Liu et al. (2020) for 2008-2016,
or 0.72 by Mayers et al. (2022) for 2004-2016. This demonstrates the importance and benefit of accounting for
spatiotemporal dependencies when combining hydrographic and satellite measurements.

The MHT variability is highly consistent across BHM1, BHM2 and BHM3 at all latitudes, both in terms of phase
and magnitude, indicating that estimates of the MHT variability are robust to the choice of the surface HF product.
In contrast to the variability, differences in the time-mean MHT across the three Bayesian solutions can be relatively
large, especially in the South Atlantic and particularly between BHM1/BHM2 and BHM3. Given that the only
difference among the three Bayesian solutions is the surface HF product, these results demonstrate that the surface
HF makes an important contribution to the time-mean MHT and highlight the importance to our approach of having
accurate, unbiased estimates of such a quantity. We have found that the magnitude of the variability tends to grow
gradually from north to south, with peak-to-peak fluctuations that can reach 1.5 PW at the southernmost latitudinal
sections. The MHT variability is not coherent across the whole Atlantic Ocean but instead covaries within, although
not between, two distinct bands of latitudes, namely between 35° N and 16° N and from 5° N to 35° S. Regarding
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the time-mean MHT, all three Bayesian solutions show northward MHT across the entire Atlantic Ocean, with a
latitudinal profile that is characterized by relatively small transport in the South Atlantic Ocean, particularly south
of 11° S, and maximum transport between 26° N and 16° N.

Our results are exceptionally good if we accept the agreement with RAPID-derived MHT as a measure of
performance, but there are some limitations that the users of these estimates need to be aware of. The first one is
that our estimates of MHT have been derived by assuming no variability in the MHT at 65° N. As discussed earlier,
this assumption will produce very accurate estimates of MHT variability over most of the Atlantic Ocean, but the
incurred errors will be larger at high latitudes of the North Atlantic where the MHT variability is smaller in
magnitude, particularly north of 45° N. Additionally, while estimates of the time-mean MHT are not affected by
this assumption, it is important to remember that the time-mean MHT at 60° N has been set equal to that derived
from the OSNAP array over the period 2014-2018. This assumes a constant time-mean MHT at 60° N over the
analysis period (2004-2020), and thus deviations from this premise will introduce an error into the time-mean MHT
at all the other latitudes. That said, such an error is expected to be very small based on the absence of a trend in the
MHT time series from OSNAP and the excellent agreement with the RAPID-derived MHT at 26° N. Finally, it is
also important to note that our estimates are derived from observational data spatially aggregated into 3° x 3° areal

units, hence our approach is unlikely to resolve variations in MHT between latitude lines spaced by less than 3°.
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